Production cross sections of 45 Ti via deuteron-induced reaction on 45 Sc

Ts. Zolbadral,^{*1,*2} M. Aikawa,^{*1,*3,*2} D. Ichinkhorloo,^{*3,*2} Kh. Tegshjargal,^{*4} Y. Komori,^{*2} H. Haba,^{*2} S. Takács,^{*5} F. Ditrói,^{*5} and Z. Szücs^{*5}

The radionuclide ⁴⁵Ti ($T_{1/2} = 184.8 \text{ min}$) is a positron emitter ($E_{\beta^+} = 439 \text{ keV}$, $I_{\beta^+} = 84.8\%$) suitable for positron emission tomography (PET). This radioisotope can be produced in the deuteron-induced reaction on a scandium-45 target at cyclotrons. However, the quality of experimental data on the cross sections of the ⁴⁵Sc(d, 2n)⁴⁵Ti reaction is not satisfactory. The main purpose of this study is, therefore, to measure the cross sections of the ⁴⁵Sc(d, 2n)⁴⁵Ti reaction for ⁴⁵Ti production. In addition, the physical yield is derived from the measured cross sections.

The stacked-foil activation technique and γ -ray spectrometry were adopted to determine the cross sections. The stacked target consisted of metallic foils of ⁴⁵Sc (thicknesses of 7.71 mg/cm² and 76.0 mg/cm² with a purity of 99.0%), 27 Al (4.99 mg/cm², 99.6%), and nat Ti $(9.13 \text{ mg/cm}^2, 99.6\%)$. The target was irradiated for 30 min with a 24-MeV deuteron beam from the RIKEN AVF cyclotron. The incident beam energy was measured by the time-of-flight method. The energy degradation in the stacked target was calculated using the SRIM code.¹⁾ The beam intensity was measured using a Faraday cup and cross-checked with the $^{nat}Ti(d, x)^{48}V$ monitor re $action.^{2}$ According to the cross checking, the intensity (175.2 nA) was corrected by a decrease of 3% from the measured value (180.3 nA). The γ -ray spectra of the irradiated foils were measured by a high-resolution and high-purity germanium (HPGe) detector. The detector was calibrated by a standard mixed γ -ray point source. The dead time was kept below 7% in the measurements.

Fig. 1. Excitation function of the ${}^{45}Sc(d, 2n){}^{68}Ti$ reaction.

- *1 Graduate School of Biomedical Science and Engineering, Hokkaido University
- *² RIKEN Nishina Center
- *³ Faculty of Science, Hokkaido University
- *4 School of Engineering and Applied Sciences, National University of Mongolia
- *5 Institute for Nuclear Research (ATOMKI), Hungary

2000 45Ti This work (⁴⁵Ti) Dmitriev+(1982) • 500 0 5 10 15 20 Energy (MeV)

Fig. 2. Physical yield of ⁴⁵Ti.

The cross sections of the ${}^{45}\text{Sc}(d, 2n){}^{45}\text{Ti}$ reaction were derived from the measurement of the 719.6-keV γ -line ($I_{\gamma} = 0.154\%$) associated with the ${}^{45}\text{Ti}$ decay. The excitation function of the ${}^{45}\text{Sc}(d, 2n){}^{45}\text{Ti}$ reaction is shown in Fig. 1 in comparison with previous experimental data³) and the theoretical estimation from TENDL-2017.⁴) The derived excitation function of the ${}^{45}\text{Sc}(d, 2n){}^{45}\text{Ti}$ reaction is consistent with the data reported by Hermanne *et al.*³) The peak position of the TENDL-2017 data is slightly shifted to a lower energy.

The physical yield of 45 Ti was deduced from a spline fitted curve of the measured excitation function and stopping power calculated from the SRIM code.¹⁾ The derived yield is shown in Fig. 2. The present yield curve of 45 Ti is slightly higher than the experimental data measured by Dmitriev *et al.*⁵⁾ at 22 MeV. We confirmed that no radioactive impurities of titanium are produced in the energy range below 15 MeV, which is the threshold energy of 44 Ti production. Above 15 MeV and up to 24 MeV, the physical yield of 44 Ti is seven or more orders of magnitude less than that of 45 Ti and negligibly small. Thus, this reaction with chemical separation allows the production of high-specific-activity 45 Ti in this energy range.

This work is supported by JSPS KAKENHI Grant Number 17 K07004. Ts.Z was granted a scholarship by the M-JEED project (Mongolian-Japan Engineering Education Development Program, J11B16).

References

- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 2) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- A. Hermanne *et al.*, Nucl. Instrum. Methods Phys. Res. B 270, 106 (2012).
- 4) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).
- 5) P. P. Dmitriev et al., INDC (CCP)-210, 1 (1983).