Separation and purification of ¹³⁹Ce tracer for metallofullerene synthesis

K. Akiyama,^{*1,*2} K. Amekura,^{*1} and H. Haba^{*2}

Recently, clinical tests have been conducted on radionuclides of group 3 elements including lanthanides, and some radionuclides were newly approved as radiopharmaceuticals. Metallofullerenes encapsulating lanthanide elements are attractive for application in electronic devices and pharmaceuticals. In particular, it is expected that rich π electrons on a metallofullerene surface enable the production of various metallofullererene derivatives by the addition of various functional groups and that the encapsulation of radionuclides by these derivatives could be applied as radiopharmaceuticals. For such applications, excellent radionuclides, such as $^{139}\mathrm{Ce},$ emitting monochromatic γ rays and have a halflife of several months are required. In this paper, we report the separation and purification of a 139 Ce tracer from its target material for metallofullerene synthesis.

Cerium-139 was produced from the ¹³⁹La(d, 2n)¹³⁹Ce reaction using a ^{nat}La target irradiated with 5 μ A of 24 MeV deuterons for 5 h at the RIKEN AVF cyclotron. After the irradiation, the La target containig ¹³⁹Ce was dissolved in nitric acid. For the separation and purification of ¹³⁹Ce from La, the solvent extraction method was employed and was executed according to the procedure shown in the Fig. 1. The solution samples obtained in a series of this extraction procedure were measured using a Ge semiconductor detector to check the remaining ¹³⁹Ce radioactivity in each sample.

The remaining amounts of the target material La and oxidant Cr were determined by optical absorption measurement and were found to be 2.1% and 3.9%, respec-

Fig. 1. Schematic diagram of $^{139}\mathrm{Ce}$ separation from a of La target.

*2 RIKEN Nishina Center

6. unit UV х ¹³⁹Ce /arb. Absorbance / arb. unit Intensity 40 60 20 80 Retention Time / min 2. 0. 50 55 60 65 70 Retention Time / min

Fig. 2. HPLC elution behavior of ¹³⁹Ce metallofullerene together with UV-monitored chromatogram of metallofullerenes produced in this study.

tively. The amount of remaining La in a single separation process is still much larger than the amount of the 139 Ce tracer. However, it has been found that by repeating this separation procedure, it would be possible to obtain a sufficiently purified 139 Ce tracer.

As mentioned above, the separated ¹³⁹Ce tracer still includes large amounts of La and Cr. However, if the amounts of these impurities are sufficiently small relative to that of the added carrier element and do not affect the fullerene production, the purity of 139 Ce can be said to be sufficient in this experiment. To confirm this, Tb_4O_7 was added to a ¹³⁹Ce tracer solution, and this solution was employed for the metallofullerene production under the same conditions as those previously reported.¹⁾ In Fig. 2, the high-performance liquid chromatography (HPLC) elution behavior of ¹³⁹Ce metallofullerene (open circles) on a Buckyprep column (Nacalai Tesque, Inc., efluent: tolunene) is shown together with a chromatogram aquired using UV absorption (gray solid line). The most dominant elution peak found in both chromatograms are due to $M@C_{82}$.²⁾ It is reported that the HPLC retention time of $M@C_{82}$ on a buckyprep column increases as the atomic number of the encapsulated lanthanide atom increased.³⁾ The observed UVmonitored HPLC elution peak around 60 min occurs after that of Ce metallofullerene and is considered to be derived from Tb@C₈₂ because no HPLC elution peak with sufficient intensity and faster retenton time than that of $Ce@C_{82}$ is observed. In conclusion, the observed elution peak is derived from Tb@C₈₂ and the amount of the remaning La with this separation method is found to be sufficiently small.

References

- 1) K. Akiyama et al., RIKEN Accel. Prog. Rep. 49, 243 (2016).
- 2) H. Shinohara et al., Rep. Prog. Phys. 63, 843 (2000).
- 3) D. Fuchs et al., J. Phys. Chem. 100, 725 (1996).