Chemical separation of theranostic radionuclide ¹¹¹Ag produced in $^{nat}Pd(d,x)^{111}Ag$ reactions

K. Ooe,^{*1,*2} T. Watabe,^{*1,*2} Y. Shirakami,^{*2} D. Mori,^{*3} T. Yokokita,^{*3} Y. Komori,^{*3} H. Haba,^{*3} and J. Hatazawa^{*2,*4}

Silver-111 (¹¹¹Ag, $T_{1/2} = 7.45$ d) is a candidate radionuclide for the ranostics (the rapeutics + diagnosis). The nuclide emits β -particles (maximum β energy: 1036.8 keV), which can be applied to tumor therapy, and γ -rays with energies of 342 keV (branching ratio: 7%) and 245 keV (branching ratio: 1.33%), which can be used for imaging by single photon emission computed tomography (SPECT). However, ¹¹¹Ag has been rarely applied in the field of nuclear medicine. Toward the nuclear medical use of ¹¹¹Ag, we previously measured the production cross sections of $^{nat}Pd(d, x)^{111}Ag$ reactions.¹⁾ The energy at the peak of the excitation function of the ^{nat}Pd $(d, x)^{111}$ Ag reactions was approximately 9 MeV with a cross section of approximately 40 mb, which is consistent with the reported results.²⁻⁴) In this study, ¹¹¹Ag was chemically separated from a metallic ^{nat}Pd target through anion-exchange chromatography for future nuclear medical application of ¹¹¹Ag.

¹¹¹Ag was produced by irradiating a stack of 6 metallic ^{nat}Pd foils (purity: 99.95%, thickness: 0.10 mm, Nilaco Corp., Japan) with a 24-MeV deuteron beam from the RIKEN K70 AVF Cyclotron. The average beam intensity was approximately 200 nA, and the irradiation time was 30 min. After irradiation, one of the irradiated ^{nat}Pd targets was dissolved in a mixed HNO₃ and HCl solution. After evaporation to dryness, the residue was dissolved in 1 M HNO₃ solution and then fed into an anion exchange column (Muromac 1×8 , 200–400 mesh, NO₃⁻ form, Φ 10 mm × 11 cm). Firstly, 111 Ag was eluted by 1 M HNO₃ solution. According to the literature,⁵⁾ Ag shows no adsorption in 1 M HNO_3 solution on an anion-exchange resin, while Pd adsorbs on the resin. After the elution of ¹¹¹Ag, ^{nat}Pd was stripped by concentrated HNO₃ solution. Each eluted fraction (approximately 1 mL) was subjected to γ -ray spectrometry with a Ge detector for determining ¹¹¹Ag radioactivity by using the 342-keV γ peak of ¹¹¹Ag. Because this γ peak was partly overlapped by the 345-keV γ peak of ¹⁰⁵Ag ($T_{1/2} = 41.29$ d), which was simultaneously produced in the ^{nat}Pd(d, x) reactions, the area of the 342-keV γ peak of $^{111}\mathrm{Ag}$ was calculated by Gaussian fitting. The elution behavior of ^{nat}Pd was checked using the 172-keV γ peak of ^{111m}Pd ($T_{1/2} = 5.5$ h), which was also produced in the $^{nat}Pd(d, x)$ reactions.

Figure 1 shows the elution curves of ¹¹¹Ag and

^{*2} Institute for Radiation Sciences, Osaka University

Fig. 1. Elution curves of ¹¹¹Ag and ^{111m}Pd in anionexchange chromatography.

^{111m}Pd obtained in this study. The elution of ¹¹¹Ag by 1 M HNO₃ solution started from fraction #11 and almost finished at fraction #16 before the start of elution of ^{111m}Pd, showing the clear separation of ¹¹¹Ag from the ^{nat}Pd target. By changing the eluent to concentrated HNO₃ after fraction #20, the elution of ^{111m}Pd started from fraction #28. Very little 111 Ag and 111m Pd radioactivities remained on the anion-exchange column after completion of the separation. The recovery yields of ¹¹¹Ag and ^{111m}Pd were approximately 99% and 98%, respectively. This high yield for ¹¹¹Ag is quite suitable for nuclear medical use, which requires large radioactivity for tumor therapy. Because many radioactive isotopes of Ag are produced in the $^{nat}Pd(d, x)$ reactions, the use of an enriched ¹¹⁰Pd target is essential for the selective production of ¹¹¹Ag in the ¹¹⁰Pd $(d, 2n)^{111}$ Ag reactions. However, enriched ¹¹⁰Pd targets are quite expensive, and it is important to recycle the ¹¹⁰Pd target after the separation of ¹¹¹Ag. Therefore, the high recovery yield for ^{111m}Pd obtained in this study is also favorable for the separation of ¹¹¹Ag in medical use. The present results will lead to preclinical studies of therapeutic effects with ¹¹¹Ag. References

- 1) K. Ooe et al., RIKEN Accel. Prog. Rep. 52, 195 (2019).
- A. Hermanne et al., Nucl. Instrum. Methods Phys. Res. B 217, 193 (2004).
- 3) N. Ukon et al., Nucl. Instrum. Methods Phys. Res. B **426**, 13 (2018).
- 4) F. Ditrói et al., Nucl. Instrum. Methods Phys. Res. B **270**, 61 (2012).
- 5) J. P. Faris, R. F. Buchanan, Anal. Chem. 36, 1157 (1964).

^{*3} **RIKEN** Nishina Center

^{*4} Research Center for Nuclear Physics, Osaka University