Live mouse imaging with ^{44m}Sc by a multiple-isotope PET

T. Fukuchi,^{*1} M. Shigeta,^{*1} D. Mori,^{*2} T. Yokokita,^{*2} Y. Komori,^{*2} H. Haba,^{*2} and Y. Watanabe^{*1}

We have been developing a multiple-isotope positron emission tomography (MI-PET) system that can analyze the dynamics of multiple tracers. Using a positron- γ emitter, which emits de-excitation γ -ray as a tracer after the positron emission in β -decay, the MI-PET system identifies the tracer by detecting the prompt γ -ray emitted after the positron emission. Figure 1 shows a schematic illustration of the developed MI-PET prototype system. This system is composed of a PET scanner and additional γ -ray detectors.¹⁾ In this system, in addition to conventional PET imaging, coincidence among the additional detectors and the PET scanner can be performed. We expect that MI-PET will be used for drug discovery research by direct comparison between old and new drugs.

For multiple-isotope imaging using MI-PET, at least one positron- γ emitter is necessary as a tracer. Scandium-44 is one of the promising radioactive-tracer candidates for MI-PET because of its large positron and γ -ray emission ratio and moderate half-life (⁴⁴Sc: 3.97 h, ^{44m}Sc: 58.61 h). In our previous work, we performed dual-isotope phantom imaging using ^{44m}Sc and ¹⁸F (pure positron emitter) and evaluated the basic imaging performance of MI-PET for ^{44m}Sc.²)

Therefore, before the future development of a 44m Sclabeled drug for MI-PET applications, in order to test the practical imaging ability of the MI-PET system for 44m Sc, we conducted dual-isotope live mouse imaging using 44m Sc, which is a simple substance.

Scandium-44m was produced at the RIKEN AVF cyclotron via the reaction ${}^{44}\text{Ca}(d,2n){}^{44\text{m}}\text{Sc}$ with a 24-MeV deuterium beam. As the irradiation target, ${}^{44}\text{CaO}$

Fig. 1. Schematic illustration of the developed MI-PET prototype system.

Fig. 2. Images of a live mouse with ^{44m}Sc and ^{18}F -FDG injections (maximum intensity projection images). The reconstructed images were acquired with the absence (A) or presence (B) of γ -ray coincidence.

(97.0% enriched ⁴⁴Ca isotope) powder was pressed into a disk of 10-mm diameter. The irradiated target was dissolved in 6 M HCl and purified by the chemical processes.²) Finally, approximately 2 MBq of pure ^{44m}Sc was produced and transported to RIKEN Kobe campus for the imaging experiment. Most of the short-lived byproduct, ⁴⁴Sc, decayed out during transportation.

In the mouse imaging experiment, 197 kBq 44m Sc (simple substance) and 198 kBq 18 F-FDG were administered to an 8-week-old normal male mouse by tail-vein injection. Five minutes after administration, a 30-min whole-body scan was performed under anesthesia.

The result of dual-isotope mouse imaging is shown in Fig. 2. From the reconstructed images with the absence (A) or presence (B) of the prompt γ -ray detection, image (A) reflects the distribution of both ¹⁸F-FDG and the ^{44m}Sc tracer, whereas image (B) reflects the isolated image of the ^{44m}Sc tracer. In these images, we can clearly observe the difference between ¹⁸F-FDG and ^{44m}Sc distributions, *i.e.*, ¹⁸F-FDG is distributed in the heart and urinary bladder, whereas ^{44m}Sc distributed in the liver.

From this experiment, we successfully demonstrated the practical feasibility of dual-isotope imaging using MI-PET with ^{44m}Sc as the second tracer. In the future, we will synthesize a useful MI-PET drug labeled by ^{44m}Sc and perform multiple-drug imaging on disease model animals.

References

- 1) T. Fukuchi et al., Med. Phys. 44, 2257 (2017).
- T. Fukuchi *et al.*, RIKEN Accel. Prog. Rep. **52**, 207 (2019).

^{*1} RIKEN Center for Biosystems Dynamics Research

^{*&}lt;sup>2</sup> RIKEN Nishina Center