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β-delayed neutron emission probabilities for understanding the
formation of the r-process rare-earth abundance peak (REP)
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The abundance distribution of the rapid-neutron
capture (so-called r-) process is characterized by two
large maxima at masses of A ∼ 130 and A ∼ 195,
which are related to the flow of matter through the
neutron shell closures at N = 82 and N = 126.
However, there is an additional, relatively small—but
distinct—peak around A ∼ 160, which corresponds
to the region of the rare-earth elements. In con-
trast to the main abundance maxima that form during
the (n, γ) ↔ (γ, n) equilibrium, the rare-earth abun-
dance peak (REP) originates later, after neutron ex-
haustion, thus representing a unique opportunity to
study the late-time environmental conditions of the r-
process.1–3) Several different peak-production mecha-
nisms were suggested, but experimental data—masses,
β-decay parameters, and neutron capture rates—are
clearly needed to evaluate the different astrophysical
scenarios. The most influential nuclei to the REP for-
mation, located in the A ∼ 160, 55 ≤ Z ≤ 64 neutron-
rich region, have been identified by sensitivity stud-
ies.3)

The aim of the NP1612-RIBF148 experimental pro-
gram is to measure the β-decay parameters, half-
lives, and delayed-neutron-emission probabilities (Pn

values) of these species using the BRIKEN array,
which is the largest and most efficient β-delayed neu-
tron detector built.4,5) It consists of 140 3He gas-
filled proportional counters embedded in a high-density
polyethylene moderator. The neutron detector and
two CLARION-type clover high purity germanium de-
tectors are placed around the AIDA DSSSD array6)

which contains six layers of highly segmented Si detec-
tors for the detection of implantations and β electrons.

The study was conducted at the Radioactive Iso-
tope Beam Factory. A 60-pnA intensity 238U beam
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Fig. 1. Preliminary half-life analysis for 163Pm isotopes,
showing the contributions to the total fit from the par-
ent, daughter, and granddaughter isotopes. Our T1/2

result is compared to the existing data7) (bold and
slanted characters, respectively).

was accelerated up to an energy of 345 MeV/nucleon
before incidence on a 4-mm thick Be target to produce
radioactive secondary beams by in-flight fission. The
nuclei of interest were separated and identified in the
BigRIPS spectrometer, transported through the Ze-
roDregree spectrometer, and implanted in the AIDA
array. Figure 1 shows the results of the preliminary
half-life analysis of the 163Pm isotope. Although some
half-lives in this region have already been already mea-
sured7) our experiment will not only provide a large
number of new Pn values8) and half-lives but also con-
siderably improve the precision of the available data.
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