β -delayed neutron emission probabilities for understanding the formation of the *r*-process rare-earth abundance peak (REP)

G. G. Kiss,^{*1} A. Tarifeño-Saldivia,^{*2} J. L. Tain,^{*3} A. Estrade,^{*4} S. Nishimura,^{*5} J. Agramunt,^{*3} A. Algora,^{*3}

N. T. Brewer,^{*6} R. Caballero-Folch,^{*7} F. Calvino,^{*2} T. Davinson,^{*8} I. Dillmann,^{*7} N. Fukuda,^{*5} R. K. Grzywacz,^{*9} O. Hall,^{*6} A. I. Morales,^{*3} A. Navarro,^{*2} N. Nepal,^{*5} B. C. Rasco,^{*6} K. P. Rykaczewski,^{*6} N. T. Szegedi,^{*1} A. Vitéz-Sveiczer,^{*1} A. Tolosa-Delgado,^{*3} P. Vi,^{*10} R. Yokoyama,^{*9} M. Wolinska-Cichocka,^{*11} and P. Woods^{*8} for the BRIKEN collaboration^{*12}

The abundance distribution of the rapid-neutron capture (so-called r-) process is characterized by two large maxima at masses of $A \sim 130$ and $A \sim 195$, which are related to the flow of matter through the neutron shell closures at N = 82 and N = 126. However, there is an additional, relatively small—but distinct—peak around $A \sim 160$, which corresponds to the region of the rare-earth elements. In contrast to the main abundance maxima that form during the $(n, \gamma) \leftrightarrow (\gamma, n)$ equilibrium, the rare-earth abundance peak (REP) originates later, after neutron exhaustion, thus representing a unique opportunity to study the late-time environmental conditions of the rprocess.^{1–3)} Several different peak-production mechanisms were suggested, but experimental data-masses, β -decay parameters, and neutron capture rates—are clearly needed to evaluate the different astrophysical scenarios. The most influential nuclei to the REP formation, located in the $A \sim 160, 55 < Z < 64$ neutronrich region, have been identified by sensitivity stud $ies.^{3)}$

The aim of the NP1612-RIBF148 experimental program is to measure the β -decay parameters, halflives, and delayed-neutron-emission probabilities (P_n values) of these species using the BRIKEN array, which is the largest and most efficient β -delayed neutron detector built.^{4,5)} It consists of 140 ³He gasfilled proportional counters embedded in a high-density polyethylene moderator. The neutron detector and two CLARION-type clover high purity germanium detectors are placed around the AIDA DSSSD array⁶⁾ which contains six layers of highly segmented Si detectors for the detection of implantations and β electrons.

The study was conducted at the Radioactive Isotope Beam Factory. A 60-pnA intensity 238 U beam

*³ Instituto de Física Corpuscular (IFIC)

- *⁵ RIKEN Nishina Center *⁶ Oak Bidge National Lab
- *⁶ Oak Ridge National Laboratory
- *7 Physical Sciences Division, TRIUMF
- *8 School of Physics and Astronomy, University of Edinburgh *9 Department of Physics and Astronomy, University of Ten-
- *9 Department of Physics and Astronomy, University of Tennessee
- ^{*10} Faculty of Physics, VNU University of Science
- *11 HIL, University of Warsaw

Fig. 1. Preliminary half-life analysis for 163 Pm isotopes, showing the contributions to the total fit from the parent, daughter, and granddaughter isotopes. Our $T_{1/2}$ result is compared to the existing data⁷ (bold and slanted characters, respectively).

was accelerated up to an energy of 345 MeV/nucleon before incidence on a 4-mm thick Be target to produce radioactive secondary beams by in-flight fission. The nuclei of interest were separated and identified in the BigRIPS spectrometer, transported through the ZeroDregree spectrometer, and implanted in the AIDA array. Figure 1 shows the results of the preliminary half-life analysis of the ¹⁶³Pm isotope. Although some half-lives in this region have already been already measured⁷⁾ our experiment will not only provide a large number of new P_n values⁸⁾ and half-lives but also considerably improve the precision of the available data.

References

- 1) R. Surman et al., Phys. Rev. Lett. 79, 1809 (1997).
- A. Arcones, G. Martinez Pinedo, Phys. Rev. C 83, 045809 (2011).
- R. M. Mumpower *et al.*, Prog. Part. Nucl. Phys. 86, 86 (2016).
- 4) A. Tarifeno-Saldivia et al., J. Instrum. 12, P04006 (2016).
- A. Tolosa-Delgado *et al.*, Nucl. Instrum. Methods Phys. Res. **925**, 133 (2019).
- 6) C. Griffin *et al.*, Proc. Sci. **NIC-XIII**, 097 (2014).
- 7) J. Wu et al., Phys. Rev. Lett. 118, 072701 (2017).
- A. Tarifeño-Saldivia *et al.*, RIKEN Accel. Prog. Rep. 52, 39 (2019).

^{*&}lt;sup>1</sup> Institute for Nuclear Research (Atomki)

^{*&}lt;sup>2</sup> Universitat Politècnica de Catalunya (UPC)

 ^{*4} University College of Science and Engineering, Central Michigan University (CMU)
*5 DIVERVING Content of Content o

 $^{^{\}ast 12}$ www.wiki.edu.ac.uk/display/BRIKEN/Home