J. Hu,^{*1} H. Yamaguchi,^{*2} S. W. Xu,^{*1} N. T. Zhang,^{*1} S. B. Ma,^{*1} L. H. Ru,^{*1} E. Q. Liu,^{*1} T. Liu,^{*1}
S. Hayakawa,^{*2} L. Yang,^{*2} H. Shimizu,^{*2} D. Kahl,^{*3} C. B. Hamill,^{*3} A. Murphy,^{*3} J. Su,^{*4} X. Fang,^{*5} K. Chae,^{*6}
M. Kwag,^{*6} S. Cha,^{*6} N. N. Duy,^{*6} N. K. Uyen,^{*6} D. Kim,^{*6} G. Pizzone,^{*7} M. L. Cognata,^{*7} S. Cherubini,^{*7}
S. Romano,^{*7} A. Tumino,^{*7} J. Liang,^{*8} A. Psaltis,^{*8} M. Sferrazza,^{*8} D. H. Kim,^{*9} and S. Kubono^{*10}

Type-I X-ray bursts are the most frequently observed thermonuclear explosions in nature.¹⁾ They occur on the surface of accreting neutron stars in lowmass X-ray binary systems. The investigation of Xray bursts can help us understand the properties of a neutron star and the underlying physics.

The bursts are driven by the tripe- α reaction, the αp -process, and the rp-process. After breakout from the hot CNO cycle, the nucleosynthesis path is characterized by the αp -process.²) The αp -process is a sequence of α - and proton-induced reactions that transport nuclear material from the CNO cycle toward the region of heavier proton-rich nuclei.

The X-ray light curve is the main direct observable of X-ray bursts and could be affected significantly by the αp -process. According to a recent sensitivity study by Cyburt,³) the ²²Mg(α , p)²⁵Al reaction is thought to be the most sensitive one during the αp -process and may have a prominent impact on the burst light curve. However, with scarce experimental information on this reaction, the reaction rate in the calculations of X-ray bursts is estimated based on statistical models.

A measurement of ${}^{25}Al+p$ resonant elastic scattering has been performed to experimentally examine the $^{22}Mg(\alpha, p)^{25}Al$ reaction rates. The experiment was performed using the CNS radioactive ion beam separator (CRIB),⁴⁾ installed by the Center for Nuclear Study (CNS), University of Tokyo, in the RIKEN Accelerator Research Facility. A primary beam of ²⁴Mg⁸⁺ was accelerated up to 8.0 MeV/nucleon by the AVF cyclotron with an average intensity of 1 $e\mu A$. The primary beam bombarded a liquid-nitrogen-cooled D_2 gas target to produce a secondary ²⁵Al beam via the ${}^{24}Mg(d, n){}^{25}Al$ reaction in inverse kinematics. The ²⁵Al beam was separated by the CRIB separator. The ²⁵Al beam, with an average energy of 5.68 MeV/nucleon and an average intensity of 2.0×10^5 pps, was then delivered to the F3 experimental chamber, where it bom-

- *1 Institute of Modern Physics, Chinese Academy of Sciences
- *² Center for Nuclear Study, University of Tokyo
- *³ School of Physics & Astronomy, University of Edinburgh

- *5 School of Physics, Sun Yet-sen University
- *6 Department of Physics, Sungkyunkwan University
- ^{*7} INFN-LNS, Laboratori Nazionali del Sud
- *8 Department of Physics & Astronomy, McMaster University
- ^{*9} Department of Physics, Ewha Womans University
- $^{\ast 10}\,$ RIKEN Nishina Center

Fig. 1. Schematic diagram (top view) of the experimental setup at the F3 chamber.

barded a $13.95\text{-mg/cm}^2\text{-thick }(\text{CH}_2)_n$ target and a $18.02\text{-mg/cm}^2\text{-thick }\text{C}$ target in which the beam was stopped. The C target was used to evaluate the background contributions. After passing through a Wien filter, the ${}^{25}\text{Al}$ beam purity can be up to 80%.

The setup at the F3 experimental chamber is shown in Fig. 1. A parallel-plate avalanche counter (PPAC) and a micro channel plate (MCP) were used for measuring the time and position information of the beam particles. The beam particles were identified in an event-by-event mode using the abscissa of MCP and the time of flight between MCP and the RF signal provided by the cyclotron.

The recoiling light particles from the ²⁵Al+p reaction were measured using three sets of Si telescopes at average angles of $\theta_{lab} \approx 0^{\circ}$, 20°, and 23°, respectively. Each telescope consisted of a 65- μ m-thick double-side-strip (16 × 16 strips) silicon detector and two 1500- μ m-thick pad detectors. The recoiling particles were clearly identified using the Δ E-E method. An array of ten NaI(Tl) detectors was mounted directly above the target and used to detect the γ rays from the decay of the excited states in ²⁵Al. The data analysis is in progress.

References

- W. H. G. Lewin, J. V. Paradijs, R. E. Taam, Space Science Reviews 62, 223 (1993).
- R. K. Wallace, S. E. Woosley, Astrophys. J. Suppl. 45, 389 (1981).
- 3) R. H. Cyburt et al., Astrophys. J. Suppl. 830, 55 (2016).
- Y. Yanagisawa *et al.*, Nucl. Instrum. Methods Phys. Res. A **539**, 74 (2005).

^{*4} College of Nuclear Science and Technology, Beijing Normal University