Development of β -NMR with spin-aligned beam

H. Nishibata,^{*1,*2} A. Gladkov,^{*1} H. Ueno,^{*1} Y. Ichikawa,^{*1} A. Takamine,^{*1} H. Yamazaki,^{*1} M. Tajima,^{*1} K. Kawata,^{*1,*3} M. Mihara,^{*4} T. Sato,^{*1} K. Doi,^{*1,*5} W. Kobayashi,^{*1,*5} M. Sanjo,^{*1,*5} T. Asakawa,^{*1,*5}

Y. Sasaki,^{*1,*5} T. Yada,^{*1*5} and K. Asahi^{*1}

Nuclear electromagnetic moments, namely magnetic dipole (μ) and electric quadruple (Q) moments, are one of the most sensitive probes to address a single-particle configuration and nuclear deformation, respectively. So far, nuclear moments for ground states have been measured by the method of β -ray-detected nuclear magnetic resonance (β -NMR) combined with a spinpolarized radioactive beam. However, it is difficult to apply β -NMR to far-unstable nuclei produced by BigRIPS because the spin polarization is significantly reduced for reactions with the removal of many nucleons and/or with a beam energy >100 MeV/nucleon. In order to overcome this difficulty, we have been developing a new method that combines the β -NMR technique and highly spin-aligned beam production with the twostep fragmentation method by using BigRIPS.¹⁾ This report presents the recent results of a demonstration experiment using spin-aligned ¹³B ($T_{1/2} = 17.3$ ms, I^{π} $= 3/2^{-}$) with the known ground-state μ and Q mo $ments.^{3)}$

The experiment was performed at the Heavy Ion Medical Accelerator in Chiba (HIMAC). A primary 15 N beam with an energy of 100 MeV/nucleon was accelerated by the synchrotron. The beam irradiation time was 20 ms in every 3.3 s. A radioactive ${}^{13}B$ beam was produced by the two-proton-removal reaction of ¹⁵N with a 1-mm-thick Be target, which was located at the entrance of the secondary beamline SB2. The $^{13}\mathrm{B}$ beam was separated by two dipole magnets and a wedge-type energy degrader (3-mm thickness, 6° angle) at the dispersive focal plane F1. The spin alignment was obtained by selecting a moment off the center of the momentum distribution by -4--3%. Subsequently, the spin-aligned ¹³B beam was delivered to the end of the beamline F3, where the β -NMR apparatus is located, and was implanted to a TiO_2 single crystal.

Since the Q moment of the implanted ¹³B interacts with an electric filed gradient at the implantation site in the crystal and causes unequal Zeeman splitting between the individual sub-levels, a partial spin reversal using the adiabatic fast passage (AFP) method²) becomes possible and convert the spin alignment of the implanted ¹³B into the spin polarization. Consequently, the angular distribution of the emitted β rays becomes anisotropic. For the AFP method, a static

Fig. 1. Obtained NMR spectrum for spin-aligned ¹³B. The ordinate of this spectrum shows the double ratio $R_{\rm RFon}/R_{\rm RFoff}$, where $R_{\rm RFon}$ ($R_{\rm RFoff}$) is the ratio of the β -ray counts detected by the 0° and 180° telescopes with (without) the oscillating magnetic field. The dotted line is the spectrum expected from the literature values of $\mu = +3.1778(5) \ \mu_{\rm N}$ and $Q = +36.6(8) \ {\rm mb}^{3}$) assuming a spin alignment of 4.5%.

magnetic field of 0.2 T was applied to the crystal perpendicular to the beam axis in the horizontal plane, and an oscillating magnetic field was applied by a pair of coils perpendicular to the static magnetic field. The β rays from the β decay of ¹³B were detected by two telescopes placed at 0° and 180° with respect to the direction of the static magnetic field. Each telescope consists of two 1.0-mm-thick plastic scintillators.

Figure 1 shows the obtained NMR spectrum for spin-aligned ¹³B. The resonances were observed at 3067 ± 84 kHz and 3394 ± 84 kHz, which correspond to the transitions between the Zeeman sub-levels with m = -3/2 and -1/2, +1/2, and +3/2, respectively. From these values, the moments of ¹³B_{g.s.} were deduced to be $|\mu| = 3.18$ (9) $\mu_{\rm N}$ and |Q| = 36(9) mb, which are consistent with the literature values of μ $= +3.1778(5) \ \mu_{\rm N}$ and Q = +36.6(8) mb.³⁾ We have successfully demonstrated our new method of β -NMR with a spin-aligned beam.

References

- 1) Y. Ichikawa et al., Nat. Phys. 8, 918 (2012).
- A. Abragam, The Principles of Nuclear Magnetism, (Clarendon, Oxford, 1961).
- 3) T. Nagatomo et al., Nucl. Phys. A 746, 509c (2004).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Kyushu University

^{*&}lt;sup>3</sup> Center for Nuclear Study, University of Tokyo

^{*4} Department of Physics, Osaka University

^{*5} Department of Physics, Hosei University