
Ⅱ-2. Nuclear Physics (Theory)

- 67 -

RIKEN Accel. Prog. Rep. 53

Non-relativistic expansion of Dirac equation with spherical vector and
scalar potentials†

Y. X. Guo∗1,∗2,∗3 and H. Z. Liang∗2,∗1

Since the 1970s, the density function theory (DFT)
in both the non-relativistic and relativistic frame-
works has succeeded in microscopically describing the
ground-state and excited-state properties of thousands
of nuclei in a self-consistent manner. However, the
connection between these two frameworks remains un-
clear. The non-relativistic expansion of the Dirac equa-
tion is considered to be a potential bridge connecting
these two frameworks.1,2)

In 2012, Guo3) first applied the similarity renor-
malization method (SRG)4,5) to perform the non-
relativistic expansion of the Dirac equation. By using
SRG, the Dirac Hamiltonian can be transformed into
a diagonal form after infinite steps of unitary trans-
formations, i.e., the eigenequations for the upper and
lower components of the Dirac spinors can be decou-
pled. Furthermore, the Hamiltonian H thus obtained
was expanded in powers of 1/M (with M being the
bare mass of the nucleon).

The results up to the 1/M3 order were calculated.3)
However, the differences between the corresponding
results and the exact ones were still approximately
1 MeV. Therefore, it is necessary to include higher-
order corrections. In this work, the results up to the
1/M4 order are calculated, and the differences between
the calculated and exact values are less than 0.2 MeV
for all states.

From a simple observation, some geometric progres-
sions are determined in the results of the conven-
tional SRG method. This observation is reminiscent
of the idea of resummation. In the reconstituted SRG
method, replacing M with the Dirac mass M∗ = M+S
(with S being the scalar potential) not only yields the
non-relativistic expansion up to a certain order, but
also sums up the terms that belong to their families
up to infinite order. Consequently, the convergence of
the reconstituted SRG is much faster than that of the
conventional SRG. The spectrum of the Hamiltonian
H̃ thus obtained is shown in Fig. 1.

The Foldy-Wouthuysen (FW) transformation6–9) is
another non-relativistic expansion method that has
been widely used. Both the FW transformation and
SRG method provide a systematic way to perform the
non-relativistic expansion of the Dirac equation up to
an arbitrary order. Thus, we also apply the FW trans-
formation to a general case of the covariant DFT. In
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Fig. 1. Energy spectrum of H̃ for the four pseudospin part-
ners calculated using the reconstituted SRG method.
The first, second, and third columns show the single-
particle energies up to the first, second, and third or-
ders, respectively. The last column, labeled “Exact,”
shows the eigenenergies of the Dirac equation.

this work, the results with the FW transformation have
also been obtained up to the 1/M4 order and compared
with the corresponding results obtained using conven-
tional SRG method. It seems that the FW transfor-
mation and the conventional SRG method produce the
same results up to the second order, but they show dif-
ferences from the third order. By introducing a block-
diagonal transformation Ξ, we determined that the re-
sults obtained using the conventional SRG method are
equal to those obtained using the FW transformation
with an additional unitary transformation Ξ. Conse-
quently, the spectrum of the single-particle energy ob-
tained using the FW transformation is identical to that
obtained using the SRG method.

With the applications of the SRG method and FW
transformation, the bridge connecting the DFT in the
relativistic and non-relativistic frameworks is now con-
ceivable.
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