Dineutron correlation and rotational excitations in neutron-rich Mg isotopes

M. Yamagami *1

The spatial two-neutron correlation between two weakly-bound neutrons, called dineutron correlation, is one of the unique features of nuclei around the neutron drip line. It is considered to be a universal phenomenon that appears over all mass-number regions. However, experimental probes for this phenomenon are still under intense debate, except for light-mass nuclei such as ¹¹Li. In this study, the influences of the novel pairing effect on rotational excitations in neutron-rich Mg isotopes are clarified.

The experimental moment of inertia (MOI), which can be extracted from the excitation energy $E(2_1^+)$, is smaller than the rigid-body values by a factor of 2 to 3. The most important influences in this respect are pairing correlations. I calculate the Thouless-Valatin (TV) MOI, which includes the pairing correlations and residual interactions within the framework of the quasiparticle random phase approximation (QRPA).

The Hartree-Fock-Bogoliubov (HFB) equation with the Skyrme energy density functional (EDF) is solved in the three-dimensional wave-number mesh space.¹⁾ On top of the HFB states, the QRPA equation in the A-Bmatrix form¹⁾ is solved for the TV MOI:

$$\Im_{\rm TV} = 2 \sum_{kk',ll'} (J_x)^*_{kk'} (A+B)^{-1}_{kk',ll'} (J_x)_{ll'}.$$
 (1)

The Skyrme SkM* EDF predicts the neutron drip line at ⁴⁴Mg. The quadrupole deformations of ^{34, 36, 38, 40, 42, 44}Mg are $\beta = 0.35, 0.30, 0.28, 0.28, 0.21$,

Fig. 1. Neutron pairing gaps Δ_n in neutron-rich Mg isotopes. The results obtained using the surface-type and volumetype pairing forces are compared with the experimental data.

Fig. 2. Same as Fig. 1 but for the Thouless-Valatin (TV), Belyaev, and experimental MOIs. They are divided by the empirical value.

and 0.15 respectively. Figure 1 shows the neutron pairing gaps Δ_n in neutron-rich Mg isotopes. The pairing gaps Δ_n are almost constant in calculation using the surface-type pairing force. This pairing force has a strong continuum-coupling effect and creates dineutron correlation around ⁴⁰Mg.^{1,2)} The continuum-coupling effect is weak in the volume-type pairing force, and the neutron pairing gaps Δ_n decrease as a function of mass number A.

Figure 2 shows the TV MOIs in neutron-rich Mg isotopes. The Belyaev MOIs, in which the residual interactions in QRPA are neglected, are also shown. They are divided by the empirical value $\Im_{\rm emp} = \beta^2 A^{7/3}/400 \; [{\rm MeV}^{-1}]$. The TV MOIs using the surface-type pairing force agree well with the experimental values, whereas the Belyaev MOIs underestimate the experimental values by about 20%.

The ratios of TV MOIs $\Im_{\rm TV}/\Im_{\rm emp}$ are almost constant in Mg isotopes with $A \leq 40$, but they are substantially enhanced in ^{42, 44}Mg owing to the weak-binding effect.

In conclusion, it is emphasized that the experimental MOIs in neutron-rich Mg isotopes are well reproduced by the TV MOIs using the surface-type pairing force, which creates dineutron correlations. The difference between the TV MOIs using the surface-type and volume-type pairing forces increases on approaching the neutron drip line, and the difference is 20.7% in ⁴⁴Mg.

References

- 1) M. Yamagami, Phys. Rev. C **100**, 054302 (2019).
- 2) M. Yamagami et al., Phys. Rev. C 77, 064319 (2008).

^{*1} Department of Computer Science and Engineering, University of Aizu