
RIKEN Accel. Prog. Rep. 54 (2021)

GPU acceleration of SAMURAI particle tracking simulation

J. Gao∗1,∗2

The possibility of graphical processing unit(GPU)
acceleration of the trajectory simulation of particles
passing through SAMURAI was evaluated. To obtain
A/Z in particle identification plot, information such as
the flight path and rigidity obtained from this type of
simulation is necessary. Usually, this tracking simula-
tion is the most time-consuming step in the analysis of
SAMURAI data.

As with most other steps in nuclear physics data
analysis, this particle tracking simulation is performed
event by event. Therefore the simulation could be ac-
celerated by distributing the events to large amount of
threads of a GPU to process in parallel. In principle,
all the event-by-event analysis could be accelerated by
parallel computing and could take advantage of a GPU.

Another advantage of a GPU is its special cache
structure. In contrast to the linear structured cache
in a CPU, the cache in a GPU could have a higher-
dimensional layout.1) Therefore, when interpolating in
the magnet field map, the GPU could fetch the neigh-
boring mesh point with fewer cache misses.

In this work, a simplified task is designed to evalu-
ate the performance of trajectory simulation on a CPU
and GPU. The standard program used in data analy-
sis takes the position and angle before and after the
magnet and provides the rigidity as the output. It it-
erates several times to obtain a certain rigidity that
reproduces the position and angle measured in the ex-
periment. This simplified version takes the position,
angle, and rigidity before the magnet and outputs the
position and angle after the megnet without any itera-
tions. The CPU version is modified from the code used
for the particle identification of SAMURAI11 data.2)

The program uses a fourth-order Runge-Kutta
method to simulate the trajectory of a particle in the
SAMURAI magnet. Both the CPU and GPU ver-
sions of the program were developed. The test was
performed on a server with 4 Intel Xeon Gold 6136
CPUs (each has 12 cores/24 threads), 128 GB mem-
ory, and one Nvidia Titan V GPU. The CPU version
code is written in Go programming language and opti-
mized using the AVX2 assembly.3,4) The GPU version
is written in C++ and CUDA. 1024000 events were fed
into the programs, and each version ran 3 times.

The results are summarized in Table 1. The timer
starts immediately after the field map is loaded into the
main or GPU memory and the input data are loaded
into the main memory, and it stops as soon as the cal-
culation finishes, which means the hard disk I/O time
is excluded so that the time of calculation is isolated.

∗1 School of Physics, Peking University
∗2 RIKEN Nishina Center

Table 1. Test results of CPU and GPU versions of the sim-
plified simulation. The GPU could accelerate the sim-
ulation by a factor of 5 to 13 times approximately.

code CPU 1 CPU 2 GPU
configuration 32 coroutines 126 coroutines 320× 32

test #1 13.292 s 5.277 s 0.999 s
test #2 13.309 s 5.319 s 1.004 s
test #3 13.317 s 5.378 s 1.011 s
average 13.306 s 5.324 s 1.004 s

In Table 1, the CPU 1 code enabled 34 threads and
allocated 32 coroutines for simulation. The CPU 2
code enabled all the 128 threads and allocated 126
coroutines for simulation. The GPU version divides
the input data into 100 groups, each of which is passed
to a device function using a configuration of 320 thread
blocks and 32 threads per block. Different groups
are processed asynchronously to hide the time of data
transfer between the main memory and device mem-
ory.

For SAMURAI11 data, it takes 3.15 iterations on
average to obtain the rigidity and a maxmium of 5 it-
erations. For the CPU1 and CPU 2 configurations, the
time for simulation should be 13.306 × 3.15 = 41.91 s
and 5.324×3.15 = 16.77 s, respectively. If we consider
the worst case for the GPU, where each thread block
contains an event that need 5 iterations, then the sim-
ulation time is 1.004×5 = 5.02 s, which is 8 or 3 times
faster than the CPU version, depending on the number
of threads used in the CPU code.

In conclusion, with a reasonable GPU cost and cod-
ing effort, the simulation could be made significantly
faster.

References
1) CUDA C++ Programming Guide,

docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html

2) J. Gao et al., in this report.
3) Intel 64 and IA-32 Architectures Software Developer’s

Manual,
software.intel.com/content/www/us/en/develop/
articles/intel-sdm.html

4) A Quick Guide to Go’s Assembler,
golang.org/doc/asm

1
- 104 -

RIKEN Accel. Prog. Rep. 54 (2021) II-9. Instrumentation




