111-2. Atomic & Solid State Physics (Muon)

RIKEN Accel. Prog. Rep. 54 (2021)

Successive Transitions in Spin-dimer Compound Cs3V,Clg

H. Kikuchi,**3 Y. Fujii,*?> and 1. Watanabe*3

A3MsXg (A = Cs, Rb : M = transition metal el-
ements: X = Cl, Br) compounds with trigonal space
group P63/mmc are composed of isolated di-nuclear
complexes [MyXo|?>~ and their magnetic properties are
explained within an isolated or weakly coupled spin
dimer model. Because these spin dimers are arranged
in a triangular form, the spin frustration effect is ex-
pected to appear when magnetic phase transition oc-
curs via finite interdimer interactions. Cs3VClg, one
member of the AsMyXg family with magnetic ion V3+
(S = 1), was previously studied via magnetic suscep-
tibility and inelastic neutron scattering measurement
using powder sample’) and no magnetic ordering was
observed above 1.5 K. We recently synthesized a single
crystal of CssVaClg and measured susceptibility x(7')
and specific heat, and we found successive phase tran-
sition at T ~ 4 K and T, ~ 15 K.?)

These successive phase transitions are not explained
within the framework of the isolated dimer model, and
they show the presence of non-negligible interdimer in-
teraction. x(7') shows no anomaly at T, although Ty
is accompanied by the cusp-like anomaly of x (7). The
lower temperature transition is suggested to be an an-
tiferromagnetic transition although the spin structure
is not clear. The higher temperature transition is not
a mere crystal structure transition because the tran-
sition temperature depends on the applied magnetic
field.

We measured the uSR of Cs3V2Clg to clarify the na-
ture of the successive phase transitions. Figure 1 shows
the zero-field muon spin relaxation (ZF-pSR) spectra
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Fig. 1. Temperature dependence of the ZF-uSR spectra of
CS3V2019.
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Fig. 2. Temperature dependence of the relaxation rate As.

measured down to 1.6 K. At relatively high temper-
atures, the spectra follow Gaussian curves. As the
temperature decreases, the spectra changes from Gaus-
sian to an exponential curve following as exp(—Ast) +
ayexp(—Ayt), where Ay and Ay denote slow and fast
relaxation rates, and a, and ay represent amplitudes
of the asymmetry of slow and fast components, respec-
tively. Solid lines in Fig. 1 are fitted results. Figure 2
shows the temperature dependence of \s. A distinct
peak is observed at around T, which confirms that a
magnetic long range order occurs at this temperature.
No anomaly of lambda is observed at T,,, which indi-
cates that an internal field does not appear. The phase
transition at T, is not accompanied by the internal
field, whereas the value of T;, depends on the applied
magnetic field. One candidate for the transition at T,
is a spin nematic order wherein quadrupole moments,
not magnetic moments, play the role of an order pa-
rameter. Because the nematic state does not break the
time-reversal symmetry, usual magnetic probes includ-
ing muon do not detect this transition.?) Several the-
oretical studies indicate the occurrence of the nematic
order in an S = 1 triangular lattice antiferromagnet
or spin dimer magnets. The findings obtained by this
1SR experiments make it more likely that T, is the
nematic transition.
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