Successive Transitions in Spin-dimer Compound Cs₃V₂Cl₉

H. Kikuchi,^{*1,*3} Y. Fujii,^{*2} and I. Watanabe^{*3}

 $A_3M_2X_9$ (A = Cs, Rb : M = transition metal elements: X = Cl, Br) compounds with trigonal space group P63/mmc are composed of isolated di-nuclear complexes $[M_2X_9]^{3-}$ and their magnetic properties are explained within an isolated or weakly coupled spin dimer model. Because these spin dimers are arranged in a triangular form, the spin frustration effect is expected to appear when magnetic phase transition occurs via finite interdimer interactions. $Cs_3V_2Cl_9$, one member of the $A_3M_2X_9$ family with magnetic ion V^{3+} (S = 1), was previously studied via magnetic susceptibility and inelastic neutron scattering measurement using powder sample¹⁾ and no magnetic ordering was observed above 1.5 K. We recently synthesized a single crystal of Cs₃V₂Cl₉ and measured susceptibility $\chi(T)$ and specific heat, and we found successive phase transition at $T_N \approx 4$ K and $T_n \approx 15$ K.²⁾

These successive phase transitions are not explained within the framework of the isolated dimer model, and they show the presence of non-negligible interdimer interaction. $\chi(T)$ shows no anomaly at T_n although T_N is accompanied by the cusp-like anomaly of $\chi(T)$. The lower temperature transition is suggested to be an antiferromagnetic transition although the spin structure is not clear. The higher temperature transition is not a mere crystal structure transition because the transition temperature depends on the applied magnetic field.

We measured the μ SR of Cs₃V₂Cl₉ to clarify the nature of the successive phase transitions. Figure 1 shows the zero-field muon spin relaxation (ZF- μ SR) spectra

Fig. 1. Temperature dependence of the ZF- μ SR spectra of Cs₃V₂Cl₉.

Fig. 2. Temperature dependence of the relaxation rate λ_s .

measured down to 1.6 K. At relatively high temperatures, the spectra follow Gaussian curves. As the temperature decreases, the spectra changes from Gaussian to an exponential curve following $a_s \exp(-\lambda_s t) +$ $a_f \exp(-\lambda_f t)$, where λ_s and λ_f denote slow and fast relaxation rates, and a_s and a_f represent amplitudes of the asymmetry of slow and fast components, respectively. Solid lines in Fig. 1 are fitted results. Figure 2 shows the temperature dependence of λ_s . A distinct peak is observed at around T_N , which confirms that a magnetic long range order occurs at this temperature. No anomaly of lambda is observed at T_n , which indicates that an internal field does not appear. The phase transition at T_n is not accompanied by the internal field, whereas the value of T_n depends on the applied magnetic field. One candidate for the transition at T_n is a spin nematic order wherein quadrupole moments, not magnetic moments, play the role of an order parameter. Because the nematic state does not break the time-reversal symmetry, usual magnetic probes including muon do not detect this transition.³⁾ Several theoretical studies indicate the occurrence of the nematic order in an S = 1 triangular lattice antiferromagnet or spin dimer magnets. The findings obtained by this μ SR experiments make it more likely that T_n is the nematic transition.

References

- 1) B. Leuenberger et al., Inorg. Chem. 25, 2930 (1986).
- H. Kikuchi, T. Tanaka, Y. Fujii, A. Matsuo, K. Kindo, Abstract of the 19 International Conference on Magnetism. July 8–13, 2012 Busan, Korea, p. 167.
- 3) A. Smerald et al., Phys. Rev. B 88, 184430 (2013).

^{*1} Department of Applied Physics, University of Fukui

^{*&}lt;sup>2</sup> FIR Center, University of Fukui

^{*&}lt;sup>3</sup> RIKEN Nishina Center