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Magnetism of novel heavy fermion compound YbCu4Ni investigated by
µSR
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The f -electron systems show many examples of quan-
tum critical phenomena.1) In previous works, high-
quality crystals and advanced experimental methods
provided many instances of quantum critical phenomena
originating from antiferromagnetism. Recently, quan-
tum critical phenomena that cannot be explained by
the self-consistent renormalization (SCR) theory have
attracted much attention. However, to study such quan-
tum critical phenomena, actual candidate materials and
adequate experimental methods are required.

We focused on YbCu4T (T = transition metal) be-
cause this family exhibits exotic physical phenomena
such as the valence transition at zero field and ambi-
ent pressure in YbCu4In.2,3) In YbCu4Au, valence and
magnetic transitions are induced by applying a magnetic
field.4) Since the Yb site in this family has three-fold
symmetry, this system may show an ordered phase orig-
inating from geometrical frustration.

The temperature dependence of the specific heat
(C/T ) of YbCu4Ni shows a power-law behavior. This
behavior is consistent with the quantum critical phe-
nomena, but the SCR theory cannot explain the tem-
perature dependence of C/T .5) The purpose of our re-
search is to understand the origin of the power-law be-
havior of C/T in YbCu4Ni. Magnetism usually plays
the vital role of quantum criticality. Thus, we performed
muon spin relaxation (µSR) measurements at RIKEN-
RAL because µSR is a powerful tool to obtain informa-
tion on static and dynamic spin correlations.

Figure 1 shows the temperature dependence of the
µSR time spectra. To derive the magnetic fluctuation of
the f -electron, we applied a longitudinal magnetic field
of 100 G. Rapid relaxation was observed at low temper-
atures below 2 K, indicating the appearance of magnetic
fluctuation. However muon spin precession was not ob-
served down to the lowest temperature of 0.4 K. We
determined the asymmetry of the spectrum at 0.4 K for
the time after ∼4 µs as the baseline (∼16%). These
results suggest the inhomogeneous magnetic field at the
muon stopping site even at the lowest measurement tem-
perature.

Here, we discuss the origin of the power-law behavior
of C/T from the viewpoint of magnetic fluctuation. As
in the case of antiferromagnetism, it is highly possible
that the magnetic fluctuation is the cause of the temper-
ature dependence of C/T . There are two possible origins
of the magnetic fluctuations: (1) the novel quantum crit-
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Fig. 1. Temperature dependence of the µSR time spectra of
YbCu4Ni in a longitudinal field of 100 G.

icality and (2) magnetic inhomogeneity. For the former
case, it was theoretically aspect pointed out that a dra-
matic increase in effective mass should be observed near
the quantum critical point, other than that from the an-
itferromagnetic phase.6) For example, the temperature
dependence of C/T shows logarithmic behavior in β-
YbAlB4 even when the valence fluctuation contributed
to the physical properties.7) For the latter case, owing
to the distribution of the Kondo temperature originating
from the magnetic inhomogeneity, C/T at low tempera-
tures may show a behavior similar to quantum critical-
ity.8) Since inhomogeneous states such as the spin-glass
state may appear because of the geometrical frustration,
the latter case is also a candidate scenario. µSR mea-
surements below 0.4 K may provide evidence to clarify
the above two possibilities.

In conclusion, we performed the µSR measurements
of YbCu4Ni. At low temperature, the magnetic fluctu-
ation increased. It is highly possible that the power-law
behavior of C/T is caused by this fluctuation.
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