Li-ion diffusion in ${\rm LiFeSi}_x{\rm P}_{1-x}{\rm O}_4/{\rm C}$ with x=0 and 0.03

F. Astuti,^{*1} D. P. Sari,^{*2,*3} M. Zainuri,^{*1} Darminto,^{*1} and I. Watanabe^{*2}

The primary issue in the use of LiFePO₄ in battery applications is its low intrinsic electronic conductivity and lithium-ion diffusion coefficient. Furthermore, there is an urgent need to improve the cycle life and longterm cyclability of LiFePO₄.¹⁾ Several strategies have been considered to enhance the electronic/ionic conductivity and cycle life of LiFePO₄, such as carbon coating, reduction of particle size, and element doping.²⁾

Powder samples of LiFeSi_xP_{1-x}O₄/C with x = 0 and 0.03 were prepared by a solid-state method. Singlephase samples of LiFePO₄ have not been obtained so far. Our study strongly supports that Si doping significantly improves the electrochemical performance of LiFePO₄ as reported in Ref. 3). A sample with x = 0.03yielded the highest specific capacity. Further study on Li-ion diffusion is significant for increasing the battery performance. Muon spin relaxation (μ SR) is a powerful tool to study Li-ion diffusion.

In order to study the Li-ion diffusion in $\text{LiFeSi}_x P_{1-x} O_4/C$ further, we measured zero-field and longitudinal-field μSR (ZF- and LF- μSR , respectively) using the ARGUS spectrometer at the RIKEN-RAL Muon Facility. The ZF- μ SR was measured in the temperature range of 5–30 K, and the LF- μ SR was measured

Fig. 1. LF- μ SR spectra on of LiFeSi_xP_{1-x}O₄/C with (a) x = 0 and (b) x = 0.03.

*² RIKEN Nishina Center

Fig. 2. Temperature dependences of Δ with (a) x = 0 and (b) x = 0.03 and of λ with (c) x = 0 and (d) x = 0.03 for LiFeSi_xP_{1-x}O₄/C.

at 300 K under low magnetic fields of 5 G and 10 G.

Figure 1 shows the LF- μ SR spectra of LiFeSi $_xP_{1-x}O_4/C$ with (a) x = 0 and (b) 0.03. The dynamic behavior at 300 K was clearly observed for LiFeSi $_xP_{1-x}O_4/C$ with x = 0 and 0.03 because there is only a small "decoupling" effect due to applied LF. The spectra were fitted by an exponentially relaxing dynamic Kubo-Toyabe function.

Based on Fig. 2, the field distribution width (Δ) and field fluctuation (λ) were found to be independent of temperature down to 50 K, whereas Δ and λ increased with temperature decreasing below 50 K for samples with x = 0 and x = 0.03. There is no abrupt change in Δ or λ in either sample. Following the results in Ref. 4), we obtained the diffusion coefficient as $D_{\rm Li} = (1.598 \pm 0.0033) \times 10^{-10} \ {\rm cm}^2/{\rm s}$, for x = 0 and $D_{\rm Li} = (1.751 \pm 0.0037) \times 10^{-10} {\rm cm}^2 {\rm /s}$ for x = 0.03. The present result demonstrates the slight increase of Li-ion diffusion by silicon substitution, which can improve the performance of LiFePO₄ cathode materials. Additionally, from the ZF- μ SR results, the magnetic transition temperature was detected, starting from the temperature 50 K and close to the estimation of the Neel temperature, $T_{\rm N}$, LiFePO₄ reported in Ref. 5).

References

- 1) M. Nishijima et al., Nat. Commun. 5, 4553 (2014).
- 2) Z. Xu et al., J. Electrochem. Soc. 163, A2600 (2016).
- 3) M. Zainuri *et al.*, Key Eng. Mater. **860**, 75 (2020).
- 4) M. Månsson et al., J. Phys. Conf. Ser. 551, 012037 (2014).
- 5) J. Sugiyama et al., Phys. Rev. B 84, 054430 (2011).

^{*1} Department of Physics, Institut Teknologi Sepuluh Nopember

 $^{^{\}ast 3}\,$ Graduate School of Engineering and Science, Shibaura Institute of Technology