Production and photon measurement of 229Pa toward the observation of radiative decay of 229mTh

Y. Shigekawa,*1 T. Yokokita,*1 Y. Komori,*1 and H. Haba*1

The first excited state of 229Th (229mTh) has an extremely low excitation energy of \sim8.3 eV (150 nm),1 which may enable a nuclear clock with unprecedentedly low uncertainty. So far, the radiative half-life of 229mTh, which is an important parameter to develop the nuclear clock, has not yet been determined. To directly observe the radiative decay (γ-ray emission) of 229mTh, the internal conversion (IC) process with a half-life of \sim7 μs2 must be prohibited by placing 229mTh in the chemical environments where the electron binding energy is higher than the excitation energy of 229mTh. 229mTh doped into fluoride crystals is a candidate for such chemical environments. We are aiming to dope a CaF$_2$ crystal with 229mTh by doping with 229Pa, which decays to 229mTh by electron capture with a negligibly small recoil energy. Suitable doping can be realized by implanting high-energy 229Pa ions into a crystal and then annealing it. In this study, we developed a method for producing 229Pa ($T_{1/2} = 1.5$ d) in the 232Th($p,4n$)229Pa reaction and separating it from the target. We also measured low-energy photons from Pa isotopes on a CaF$_2$ crystal to evaluate the background toward the future γ-ray measurement of 229mTh.

Two 232Th metallic foils (thickness: 69.07 mg/cm2, purity: 99.5%) were irradiated with a 30-MeV proton beam having an intensity of 1 μA for 10 h at the RIKEN AVF cyclotron. After the irradiation, we measured γ-ray spectra for the 232Th foils and fractions resulting from the subsequent chemical separation process using a Ge detector.

The chemical separation process for one of the foils was performed as follows. First, we dissolved the foil in 2 mL of 11.3 M HCl plus 300 μL of 1 M HF and heated the solution to dryness. The sample was dissolved in 2 mL of 11.3 M HCl, following which 1.1 g of Al(NO$_3$)$_3$$\cdot$9H$_2$O was added as a masking agent for the remaining F$^-$ ions. After the solution was dried up and dissolved in 2 mL of 11.3 M HCl, the solution was fed into an anion-exchange column (Muromac IX8, 100–200 mesh, \sim1.0 mL). We poured 10 mL of 11.3 M HCl into the column to elute Th isotopes, Ac isotopes, and some fission products. Next, we added 10 mL of 6 M HCl to elute Zr, following which 5 mL of 8 M HNO$_3$ was added to elute Zr, Mo, Ru, Sb, and Te isotopes. After we added 1 mL of 11.3 M HCl, Pa isotopes were eluted with 8 mL of 9 M HCl/0.1 M HF. The chemical yield of Pa isotopes in the whole process was 94(2)% (residual Pa isotopes were observed in the 8 M HNO$_3$ eluate). The radioactivity of chemically separated 229Pa at the end of bombardment was evaluated to be 30(1) MBq, while those of 232Pa, 238Pa ($T_{1/2} = 17.4$ d), 95Zr ($T_{1/2} = 64.03$ d), and 97Zr ($T_{1/2} = 16.75$ h), included as impurities, were 2.18(3), 0.89(4), 0.0054(7), and 0.40(2) MBq, respectively.

The 229Pa sample dissolved with 27 M HF was dropped on a CaF$_2$ crystal, which was then annealed at 900°C for 1 h in a He gas flow (3 L/min). Photons from the crystal were measured with a photomultiplier (PMT, Hamamatsu R10454) in vacuum (Fig. 1). Band-pass filters for the photons of 151 ± 20 and 171 ± 20 nm (eSource Optics) placed between the crystal and the PMT were switched every 5 min. The radioactivities of 229Pa, 230Pa, and 232Pa were 10.7(8), 35(2), and 0.381(8) kBq at the start of the measurement (11 days after the proton irradiation).

As shown in Fig. 2, the count rates of photons for both filters are \sim10 counts per second (cps), which

*1 RIKEN Nishina Center

Fig. 1. Setup of the photon measurement of 229Pa.

Fig. 2. Count rates of photons as a function of the elapsed time for the 151-nm (red circle) and 171-nm (blue square) filters. Red and blue lines show the decay curves of 230Pa fitted to the data.
are much higher than the dark count rate of the PMT (0.96 cps). The detected photons would originate from the Cherenkov radiation caused by the passage of beta particles though the CaF$_2$ crystal. The long decay time of photons (half-life >7 d) in Fig. 2 indicates that the Cherenkov photons dominantly originate from the beta decay of 230Pa (0.004 photons per beta particle). If we implant 100 kBq of 229Pa into a CaF$_2$ crystal, anneal it, and start the measurement one day after the proton irradiation, the background photons from 232Pa and 230Pa are estimated to be \sim30 cps, which is much higher than the estimated count rate of γ rays from 229mTh (2 cps). Thus, we plan to perform the mass separation of 229Pa to reduce the amount of 232Pa and 230Pa by a factor of >10 when we implant 229Pa into a CaF2 crystal. Implanting 229Pa into a crystal with an efficiency of 0.1–1% allows us to observe a growth and decay curve of photons of several cps only for the 151-nm filter, resulting in the unambiguous identification of the γ rays from 229mTh.

References