Online an ion-exchange experiment of Zr in H_2SO_4 for the chemical study of Rf in H_2SO_4

T. Yokokita,^{*1} Y. Shigekawa,^{*1} Y. Wang,^{*1} Y. Komori,^{*1} Y. Kasamatsu,^{*2} E. Watanabe,^{*2} and H. Haba^{*1}

The chemical properties of superheavy elements (SHEs) with atomic number $Z \geq 104$ are expected to deviate from the periodicity of their lighter homologues in the periodic table. Thus, chemical studies on SHEs are interesting. These elements are produced at accelerators by using heavy-ion-induced nuclear reactions. The production rates of these elements are low, and their half-lives are short ($T_{1/2} \leq 1 \text{ min}$). Thus, the chemical studies of SHEs are conducted on a single-atom basis. Therefore, performing, the chemical experiment of SHEs is difficult. Thus far, the chemical properties of SHEs have been discussed by comparing them with those of their homologous elements.¹

In the solution chemistry of SHEs, ion exchange and solvent extraction are often performed.¹⁾ To study the sulfate complexation of Rf, we plan to perform anionexchange experiments of Rf along with its homologous elements. By using the batch-type solid-liquid extraction apparatus called AMBER²⁾, we measured the K_d values of Rf in 0.060–0.46 M H₂SO₄.^{3,4)} In our previous study, to obtain the comparison data for Rf, we performed an online anion-exchange experiment of Zr and Hf by using AMBER.⁵⁾ However, the K_d values of Zr had large errors, because the radioactivity of ⁸⁵Zr was very low. In this work, we re-examined the online anion-exchange behavior of ^{89m}Zr with higher radioactivities.

 89m Zr was produced in the 89 Y $(d, 2n)^{89m}$ Zr reaction by using the K70 AVF cyclotron at RIKEN. The nuclear reaction products were transported to a chemistry room by a He/KCl gas-jet system. The transported products were deposited on the collection site of the AMBER's dissolution equipment for 1 min and were then dissolved with 0.23 mL of 0.060, 0.11, 0.26, $0.30, 0.46, \text{ and } 0.72 \text{ M H}_2\text{SO}_4$. The solution sample was injected into a chemical reaction container containing 1.4–3.8 mg of an anion-exchange resin (Mitsubishi Chemical Co., MCI GEL CA08Y). After shaking the container with a shaker for 10, 30, and 90 s, only the solution phase was discharged from the container by using a PTFE filter with compressed air. The discharged solution was collected in a PP tube, and was assayed by γ -ray spectroscopy. We also performed control experiments with 10, 30, and 90 s shaking without the resin to determine the standard radioactivity of the solution sample. The $K_{\rm d}$ values were determined from the following equation:

$$K_{\rm d} = A_{\rm r} V_{\rm s} / A_{\rm s} w_{\rm r} = (A_{\rm c} - A_{\rm s}) V_{\rm s} / A_{\rm s} w_{\rm r}$$
 (1)

Fig. 1. The K_d values of Zr in an ion exchange as a function of H_2SO_4 concentration.

where $A_{\rm r}$, $A_{\rm s}$, and $A_{\rm c}$ are radioactivities of the resin, the solution, and the control solution, respectively; $V_{\rm s}$ is the volume (mL) of the solution; and wr is the mass of the dry resin (g).

Figure 1 shows the H₂SO₄-concentration dependence of the $K_{\rm d}$ values of Zr in the online and offline experiments. The $K_{\rm d}$ values of Zr in the online experiment are in agreement with those in the offline experiment within the error range in 0.11-0.72 M H₂SO₄. This indicates that the $K_{\rm d}$ values of Zr in equilibrium are obtained in the online experiment at these H_2SO_4 concentrations. However, at 0.060 M H_2SO_4 the K_d value of Zr in the online experiment was lower than that in the offline experiment. A probable reason for this disagreement is that the $K_{\rm d}$ value at this low concentration is too high to be determined with the AM-BER system. Another possibility is that the chemical reaction time is not sufficient for the anion-exchange equilibrium. Therefore, it is important to directly investigate the reaction time dependence of the anionexchange behavior of Rf to confirm the anion-exchange reaction equilibrium of Rf.

From this work, we obtained the comparison data for Rf. We will discuss the sulfate complexation of Rf based on the anion-exchange behavior of Rf, Zr, Hf, and Th in a separate study.⁴⁾

References

- 1) A. Türler, V. Pershina., Chem. Rev. 113, 1273 (2013).
- 2) Y. Kasamatsu et al., Radiochim. Acta 103, 513 (2015).
- 3) T. Yokokita $et\,al., {\rm RIKEN}$ Accel. Prog. Rep. ${\bf 53}, 165\,(2020).$
- 4) T. Yokokita et al., in this report.
- 5) T. Yokokita et al., RIKEN Accel. Prog. Rep. 52, 187 (2019).

^{*1} RIKEN Nishina Center

^{*2} Graduate School of Science, Osaka University