⁹⁹Ru and ⁵⁷Fe Mössbauer spectroscopic studies of $Na_2Ru_{1-x}FexO_3$ of sodium-ion battery electrode (2)

K. Hamano,^{*1,*2} Y. Kobayashi,^{*1,*2} H. Haba,^{*2} and H. Ueno^{*2}

Sodium-ion batteries have the potential to be the next-generation batteries to replace lithium-ion batteries owing to the abundance of its raw materials. Na₂RuO₃ is a kind of Na-excess layered oxide and is promising as a cathode material for Na-ion batteries.¹⁾ In this study, we demonstrate the oxidation states and the coordination environments of Ru ions in Na₂RuO₃ after charging and discharging processes via Mössbauer spectroscopy, X-ray diffraction (XRD), and electrochemical analysis.²⁾

A sample of $Na_2Ru_{0.99}Fe_{0.01}O_3$ was prepared via a solid-state reaction. Stoichiometric mixtures of RuO₂, NaHCO₃, and Fe₂O₃ were pressed and sintered at 850°C for 48 h in an Ar atmosphere. The sample was confirmed to possess a single phase by $XRD^{(2)}$ In the electrochemical treatment, a mixture of Na₂Ru_{0.99}Fe_{0.01}O₃, acetylene black, and polyvinylidene difluoride as a binder was applied on an Al foil. The Al foil with Na₂Ru_{0.99}Fe_{0.01}O₃ and a carbon sheet were used as the cathode and the anode, respectively. As the electrolyte, 1 M NaBF₄ solution was used.¹⁾ These materials were packed in a battery cell and subsequently charged by applying with a DC current of 4 V for 0.5 h. In the XRD pattern after charging, the characteristic peaks of triclinic ilmenite-type NaRuO₃ were assigned, in addition to those of honeycomb-type Na_2RuO_3 .

For performing ⁹⁹Ru Mössbauer spectroscopy, the source nuclide ⁹⁹Rh ($T_{1/2} = 16.1$ d) was produced by the nuclear reaction of ⁹⁹Ru(p, n)⁹⁹Rh at the AVF Cyclotron. ⁹⁹Ru Mössbauer spectra were measured at 5 K in a conventional liquid He cryostat.³⁾ The 99 Ru Mössbauer spectra of $Na_2Ru_{0.99}Fe_{0.01}O_3$ obtained at 5 K before and after charging are shown in Figs. 1(a)and (b), respectively. The spectrum before charging was fitted by a broadened single line, indicating Ru⁴⁺ with the isomer shift $\delta = -0.27(1) \text{ mm/s.}^{2,3)}$ The spread of the linewidth was considered to be caused by the doping of Fe atoms. Concurrently, the spectrum measured after charging had a poor quality owing to the small amount of sample packed into the battery cell. However, this spectrum was analyzed to consist of two components having hyperfine magnetic fields $(H_{\rm hf})$ with quadrupole splitting $(\Delta E_{\rm Q})$. The red component ($\delta = -0.27(4)$ mm/s, $\Delta E_Q = 0.51(9)$ mm/s, $H_{\rm hf} = 4.7(2)$ T) was consistent with the oxidation state of Ru⁴⁺ before charging. The blue component ($\delta = -0.01(4)$ mm/s, $\Delta E_Q = 0.07(7)$ mm/s, $H_{\rm hf} = 17.9(9)$ T) presented a larger isomer shift and a

Fig. 1. ⁹⁹Ru Mössbauer spectra of Na₂Ru_{0.99}Fe_{0.01}O₃ (a) before charging and (b) after charging.

larger internal magnetic field. The value of δ indicated that the oxidation state of Ru after charging changed from 4+ to 5+. It is probable that the oxidation number of Ru ions increased as Na⁺ ions were removed by charging, and that $H_{\rm hf}$ was generated as the structure changed to a three-dimensional ilmenite structure from a two-dimensional layer structure with a Na⁺ deficiency. This speculation is supported by the observation of magnetic splitting in the ⁵⁷Fe Mössbauer spectrum at low temperatures. The ratio of the area intensity of the blue component was approximately 66%, which is almost consistent with the Coulomb number of the one-electron oxidation reaction under the electrochemical conditions of 4 V for 0.5 h.

References

- 1) B. M. de Boisse et al., Nat. Commun. 7, 11397 (2016).
- K. Hamano *et al.*, RIKEN Accel. Prog. Rep. 53, 167 (2019).
- 3) Y. Kobayashi et al., Inorg. Chem. **31**, 4570 (1992).

^{1.001} 1 0.999 0.998 Relative transmission 0.997 (a) 0.996 0.995 1.0002 1 0.9998 0.9996 0.9994 (b) 0.9992 -2 0 2 4 _4 Velocity mm/s

^{*1} Dep. of Eng. Sci., University of Electro-Commun

^{*&}lt;sup>2</sup> RIKEN Nishina Center