Quality confirmation of RIKEN ¹⁸⁶Re using bifunctional chelating agents and derivatives

S. Oshikiri, *1,*2 M. K. -Satake, *1,*2 H. Kato, *1,*2 Y. Komori, *1 K. Suzuki, *1,*2 T. Kobayashi, *2 A. Hino, *2 and H. Haba*1

Rhenium-186 (half-life $T_{1/2} = 3.7186$ days) and ¹⁸⁸Re $(T_{1/2} = 17.003 \text{ hours})$ emit beta rays appropriate for targeted radiotherapy use. These radioactive Re isotopes are used according to the tumor size and form radiotheranostic pairs with ^{99m}Tc for radiodiagnosis.¹⁾ However, 186 Re has not been investigated as well as 188 Re has.²⁾ One of the possible reasons is that it is difficult to obtain no-carrier-added ¹⁸⁶Re through the classical production method of the ${}^{185}\text{Re}(n,\gamma){}^{186}\text{Re}$ reaction, while no-carrier-added ¹⁸⁸Re can be obtained using a $^{188}W/^{188}Re$ generator.^{1,3)} At RIKEN, we started to produce no-carrier-added ¹⁸⁶Re (RIKEN ¹⁸⁶Re) in the ${}^{186}W(d, 2n){}^{186}Re$ reaction at the RIKEN AVF cyclotron. In this study, we selected DADT, ECD, MAG3, and DMSA (Fig. 1) as model compounds, which had already been reported in many articles, $^{4-7)}$ and evaluated radiolabeling efficiencies for these compounds to confirm the quality of RIKEN ¹⁸⁶Re, especially in terms of its usefulness as a radioisotope (RI) material for bifunctional chelating agents and derivatives.^{8,9}

In this report, the method for DADT radiolabeling is described below as the representative among the model compounds.

- Step 1: RIKEN ¹⁸⁶Re (3.8 MBq) was dissolved in 0.05 M hydrochloric acid to prepare a ¹⁸⁶Re stock solution (138 MBq/mL). The radioactivity of ¹⁸⁶Re was determined using a germanium semiconductor detector and a dose calibrator.
- Step 2: 2.2 μ L of the ¹⁸⁶Re stock solution in Step 1 was added to 63.8 μ L of saline to prepare a ¹⁸⁶Re solution.
- Step 3: 3.0 μ L of the ¹⁸⁶Re solution in Step 2 was mixed with 2.5 μ L of DADT (1.0 μ g), 1.4 μ L of tin (II) dichloride dihydrate (10 μ g), and 2.0 μ L of Ltartaric acid (200 μ g) aqueous solution.
- Step 4: The mixture in Step 3 was heated to 99°C and held for 15 min.
- Step 5: The radiolabeling yield of ¹⁸⁶Re-DADT was determined using the TLC method with a C18 reversed-phase TLC plate (NAGEL RP-18W/UV254) and eluted with acetone and 0.5 M ammonium acetate in a volume ratio of 13:7.

As a result, the radiolabeling yield of 186 Re-DADT at the specific radioactivity of 4.3 GBq/mmol was 86%. In Ref. 4), 88% of the radiolabeling yield of 188 Re-DADT at the specific radioactivity of 23 GBq/mmol was reported. To compare these results, each activity of 186 Re and 188 Re was converted to the amount of substance.

Fig. 1. Chemical structures of DADT, ECD, MAG₃, and DMSA.

Both 4.3 GBq of ¹⁸⁶Re and 23 GBq of ¹⁸⁸Re correspond to 3.3 nmol. This indicates that the ratio of the amount of DADT to that of ^{186/188}Re was constant. Therefore, it was regarded that our result of labeling yield corresponded to that of ¹⁸⁸Re in Ref. 4). In a previous *in vivo* and *in vitro* evaluation, the radiolabeling of 222-MAMA(*N*-6-Ahx-OEt) with ¹⁸⁶Re was performed on 6.1 GBq/mmol.¹⁰⁾ It was suggested that RIKEN ¹⁸⁶Re is useful as an RI material for *in vivo* and *in vitro* studies.

Regarding the radiolabeling efficiencies for ECD, MAG₃, and DMSA, the radiolabeling yields were 51%, 46%, and 95%, respectively. It was revealed that these compounds are also able to form 186 Re complexes, although these are preliminary results.

In conclusion, our study revealed the availability of RIKEN ¹⁸⁶Re for radiolabeling and its feasibility as an RI material with bifunctional chelating agents and derivatives. By optimizing the labeling conditions in the future, RIKEN ¹⁸⁶Re is expected to be applied to targeted radiotherapy using bifunctional chelating agents, such as a peptide moiety in their structures.¹¹

References

- 1) N. Lepareur et al., Front. Med. 6, 132 (2019).
- 2) L. Uccelli et al., Molecules 24, 640 (2019).
- 3) G. Makris et al., Mol. Imaging Biol. 23, 52 (2021).
- 4) J. M. Jeong *et al.*, Nucl. Med. Biol. **28**, 197 (2001).
- 5) T. -Y. LuO et al., Nucl. Med. Biol. 31, 671 (2004).
- 6) G. W. Visser et al., J. Nucl. Med. 34, 1953 (1993).
- 7) K. Kothari *et al.*, Appl. Rad. Iso. **51**, 43 (1999).
- 8) G. Liu *et al.*, Anticancer Agents Med. Chem. **7**, 367 (2007).
- 9) U. Choudhry *et al.*, Dalton Trans. **3**, 311 (2003).
- 10) D. W. Demoin *et al.*, Nucl. Med. Biol. **43**, 802 (2016).
- 11) V. A. Sanders et al., Nucl. Med. Biol. 68-69, 1 (2019).

^{*1} RIKEN Nishina Center

 $^{^{\}ast 2}~$ RI Research Department, FUJIFILM Toyama Chemical Co., Ltd.