Production cross sections of $^{225}{\rm Ac}$ in the $^{232}{\rm Th}(^{14}{\rm N},xnyp)$ reactions at 116 and 132 MeV/nucleon

X. Yin,*¹ A. Nambu,*¹ Y. Komori,*¹ D. Mori,*¹ S. Oshikiri,*^{1,*2} H. Kato,*^{1,*2} A. Hino,*² and H. Haba*¹

 225 Ac ($T_{1/2} = 10.0$ d) is one of the most promising alpha-particle-emitting radionuclides for targeted radionuclide therapy.¹⁾ However, the current global availability of ²²⁵Ac is too small to support large clinical trials, and a stable supply system for ²²⁵Ac has not yet been established in Japan even at the basic research scale of 100 MBq. A spallation reaction of ²³²Th with high-energy protons is expected to be a potential production route for ²²⁵Ac.²⁾ At RIKEN, radionuclides of a large number of elements, called multitracer, have been produced by the spallation of metallic targets such as natTi, natAg, and ¹⁹⁷Au irradiated with a 135 MeV/nucleon 14 N beam from the RIKEN Ring Cyclotron (RRC).³⁾ In this work, we investigated the feasibility of ²²⁵Ac production via the 232 Th $(^{14}$ N, $xnyp)^{225}$ Ac reaction for the future domestic supply of 225 Ac. We also investigated the production of 225 Ra ($T_{1/2} = 14.9$ d) because it is useful as an $^{225}\mathrm{Ac}/^{225}\mathrm{Ra}$ generator to produce high-radio nuclidicpurity ²²⁵Ac.²⁾

A ¹⁴N⁷⁺ beam was extracted from the RRC. Three metallic ²³²Th foils (69 mg/cm²), two ²⁷Al plates (415 mg/cm²), and another three ²³²Th foils were placed in this order from the upstream side of the beam in the multitracer production chamber.³) The targets were irradiated for 1 h with a 20-pnA-intensity beam.

Fig. 1. Radioactive decay curve of the 440.5-keV γ -line of ²¹³Bi on the decay chain of ²²⁵Ra \rightarrow ²²⁵Ac \rightarrow ²²¹Fr \rightarrow ²²⁷At \rightarrow ²¹³Bi \rightarrow \cdots . The solid curve indicates the fitting result using the two-body successive decay equation (²²⁵Ra \rightarrow ²²⁵Ac \rightarrow \cdots).

*1 RIKEN Nishina Center

Fig. 2. Cross sections of the 232 Th $(^{14}$ N, $xnyp)^{225}$ Ac, 225 Ra reactions in comparison with the PHITS calculations.

After the irradiation, the second foil of each set of three 232 Th foils was subjected to γ -ray spectrometry with Ge detectors to determine the production cross sections of 225 Ac and 225 Ra. The 27 Al plates were used as beam-energy degraders. The beam energies on the measured 232 Th targets were calculated to be 132 and 116 MeV/nucleon using the stopping power model⁴) in the LISE⁺⁺ program.⁵

The radioactivities of 225 Ac and 225 Ra at the end of the irradiation were determined by following the activity of ²¹³Bi ($T_{1/2} = 45.59$ min), which was in radioactive equilibrium as the great granddaughter of ²²⁵Ac. Figure 1 shows a typical decay curve of the 440.5-keV γ -line of ²¹³Bi. The two-body successive decay equation $(^{225}\text{Ra} \rightarrow ^{225}\text{Ac} \rightarrow \cdots)$ was applied to fit the decay curve after subtracting the small contribution of the 440.4-keV γ -ray of ²²⁸Ac, which originally existed in the ²³²Th target as the granddaughter of $^{232}\mathrm{Th}.$ Some short-lived parents of $^{225}\mathrm{Ac}$ and $^{225}\mathrm{Ra}$ were produced in the reactions; therefore the measured cross sections of ^{225}Ac and ^{225}Ra are cumulative for electron-capture decay and β^- decay, respectively. The cross sections of the 232 Th $({}^{14}N, xnyp){}^{225}$ Ac $, {}^{225}$ Ra reaction are shown in Fig. 2. The cross sections of 225 Ac are larger than those of 225 Ra by a factor of 5. The experimental results were compared with those calculated by the Particle and Heavy Ion Transport code System (PHITS).⁶⁾ The PHITS code reproduces the cross sections of ²²⁵Ac, while it overestimates those of 225 Ra by a factor of 4. The production yield of 225 Ac was tentatively evaluated to be 3.3 MBq/p μ A·h

^{*2} RI Research Department, FUJIFILM Toyama Chemical Co., Ltd.

at 132–80 MeV/nucleon by normalizing the PHITS calculations to the experimental cross sections. Based on our typical experimental conditions (incident beam energy: 132 MeV; beam intensity: 1 p μ A; target thickness: 4.5 g/cm²; irradiation time: 2 d), approximately 150 MBq of ²²⁵Ac can be produced at the end of the irradiation. In the near future, we will measure the cross sections of ²²⁵Ac and ²²⁵Ra at lower energies of 80 and 100 MeV/nucleon to evaluate their yields more reliably.

References

- 1) G. Maryline et al., Radiochim. Acta 107, 1065 (2019).
- A. K. H. Robertson *et al.*, Inorg. Chem. **59**, 12156 (2020).
- 3) H. Haba et al., Radiochim. Acta 93, 539 (2005).
- J. F. Ziegler, J. P. Biersack, U. Littmark, *The Stopping* and Range of Ions in Solid (Pergamon Press, New York, 1985).
- O. B. Tarasov *et al.*, Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008).
- 6) Y. Iwamoto et al., J. Nucl. Sci. Technol. 54, 617 (2017).