Production cross sections of 225Ac in the 232Th$^{(14}N,xnyp)$ reactions at 116 and 132 MeV/nucleon

X. Yin,*1 A. Nambu,*1 Y. Komori,*1 D. Mori,*1 S. Oshikiri,*1,*2 H. Kato,*1,*2 A. Hino,*2 and H. Haba*1

225Ac ($T_{1/2} = 10.0$ d) is one of the most promising alpha-particle-emitting radionuclides for targeted radionuclide therapy.1) However, the current global availability of 225Ac is too small to support large clinical trials, and a stable supply system for 225Ac has not yet been established in Japan even at the basic research scale of 100 MBq. A spallation reaction of 232Th with high-energy protons is expected to be a potential production route for 225Ac.2) At RIKEN, radionuclides of a large number of elements, called multitracer, have been produced by the spallation of metallic targets such as natTi, natAg, and 197Au irradiated with a 135 MeV/nucleon 14N beam from the RIKEN Ring Cyclotron (RRC).3) In this work, we investigated the feasibility of 225Ac production via the 232Th$^{(14}N,xnyp)^{225}$Ac reaction for the future domestic supply of 225Ac. We also investigated the production of 222Ra ($T_{1/2} = 14.9$ d) because it is useful as an 225Ac/225Ra generator to produce high-radiouclidic-purity 225Ac.2)

A 14N$^+$ beam was extracted from the RRC. Three metallic 23Th foils (69 mg/cm2), two 27Al plates (415 mg/cm2), and another three 232Th foils were placed in this order from the upstream side of the beam in the multitracer production chamber.3) The targets were irradiated for 1 h with a 20-pnA-intensity beam.

After the irradiation, the second foil of each set of three 232Th foils was subjected to γ-ray spectrometry with Ge detectors to determine the production cross sections of 225Ac and 225Ra. The 27Al plates were used as beam-energy degraders. The beam energies on the measured 232Th targets were calculated to be 132 and 116 MeV/nucleon using the stopping power model5) in the LISE++ program.5)

The radioactivities of 225Ac and 225Ra at the end of the irradiation were determined by following the activity of 213Bi ($T_{1/2} = 45.59$ min), which was in radioactive equilibrium as the great granddaughter of 225Ac. Figure 1 shows a typical decay curve of the $^{440.5}$keV γ-line of 213Bi. The two-body successive decay equation (222Ra \rightarrow 225Ac \rightarrow \cdots) was applied to fit the decay curve after subtracting the small contribution of the $^{440.4}$keV γ-ray of 228Ac, which originally existed in the 232Th target as the granddaughter of 232Th. Some short-lived parents of 225Ac and 225Ra were produced in the reactions; therefore the measured cross sections of 225Ac and 225Ra are cumulative for electron-capture decay and β^- decay, respectively. The cross sections of the 232Th$^{(14}N,xnyp)^{225}$Ac,225Ra reaction are shown in Fig. 2. The cross sections of 225Ac are larger than those of 225Ra by a factor of 5. The experimental results were compared with those calculated by the Particle and Heavy Ion Transport code System (PHITS).5) The PHITS code reproduces the cross sections of 225Ac, while it overestimates those of 225Ra by a factor of 4. The production yield of 225Ac was tentatively evaluated to be 3.3 MBq/µA-h.

*1 RIKEN Nishina Center
*2 RI Research Department, FUJIFILM Toyama Chemical Co., Ltd.
at 132–80 MeV/nucleon by normalizing the PHITS calculations to the experimental cross sections. Based on our typical experimental conditions (incident beam energy: 132 MeV; beam intensity: 1 μA; target thickness: 4.5 g/cm²; irradiation time: 2 d), approximately 150 MBq of 225Ac can be produced at the end of the irradiation. In the near future, we will measure the cross sections of 225Ac and 225Ra at lower energies of 80 and 100 MeV/nucleon to evaluate their yields more reliably.

References