Production cross sections of ⁶⁸Ga and radioactive by-products in deuteron-induced reactions on natural $\operatorname{zinc}^{\dagger}$

Ts. Zolbadral,^{*1,*2} M. Aikawa,^{*1,*3,*2} D. Ichinkhorloo,^{*3,*2} Kh. Tegshjargal,^{*4} N. Javkhlantugs,^{*4} Y. Komori,^{*2} and H. Haba^{*2}

(qm)

section

Cross (

 68 Ga ($T_{1/2} = 68$ min), a positron emitter, is a valuable medical isotope used for positron emission tomography (PET).¹⁾ Charged-particle-induced reactions using cyclotrons are preferable routes for ⁶⁸Ga production. One of the routes is the deuteron-induced reaction on zinc. Our literature survey revealed three experimental studies on the cross sections of the $^{nat}Zn(d, x)^{68}Ga$ reaction were found, $^{2-4)}$ and there is a large discrepancy among their experimental data. Therefore, we measured the cross sections of 68 Ga via the deuteron-induced reaction on natural zinc. In addition, we measured the cross sections of co-produced radioisotopes to investigate possible radioactive impurities.

The experiment was performed at the AVF cyclotron of RIKEN RI Beam Factory. The stacked-foil activation technique and γ -ray spectrometry were used to measure the activation cross sections. The target was composed of metallic foils of ^{nat}Zn (17.64 mg/cm², 99.9% purity, Nilaco Corp., Japan) and ^{nat}Ti (9.13 mg/cm², 99.6% purity, Nilaco Corp., Japan) and irradiated for 22 min by a 24-MeV deuteron beam. The incident beam energy was measured using the time-of-flight method. The energy degradation in the stacked target was calculated using the SRIM code.⁵⁾ A beam intensity of 96 nA was measured using a Faraday cup.

The γ -ray spectra of the activated foils without chemical separation were measured using a high-resolution high-purity germanium (HPGe) detector. The detector was calibrated using a multiple γ -ray point source. The dead time was kept less than 7% in the measurement. Each foil was measured several times after cooling times ranging from 40 min to 18 d for different half-lives of products.

The cross sections of the ^{nat}Ti $(d, x)^{48}$ V monitor reaction were derived to assess the beam parameters. A comparison of the measured cross sections with the recommended values⁶ showed that the beam intensity was increased by 6.6% relative to the measured value and corrected to 102.4 nA.

The cross sections of the $^{nat}Zn(d, x)^{68}Ga$ reaction were derived from the measurement of the 1077.34-keV $\gamma\text{-line}$ $(I_{\gamma} = 3.22\%)$ from the ⁶⁸Ga decay. The measured excitation function is shown in Fig. 1 in comparison with previous data²⁻⁴) and the theoretical estimation of TENDL- $2017.^{7}$

Our result agrees with the data reported by Šimečková

Faculty of Science, Hokkaido University

This work Simeckova+(2017) □ 米 0 200 Sinteck0v4+(2017) Nassiff and Munzel (1972) Gily+(1963,⁶⁸Zn(d,2n)) TENDL2017 (⁶⁷Zn(d,n)) TENDL2017 (⁶⁸Zn(d,2n)) TENDL2017 (^{nat}Zn(d,x)) 150 100 50 0 5 10 15 20 0 Energy (MeV)

Fig. 1. Excitation function of the ${}^{nat}Zn(d, x){}^{68}Ga$ reaction in comparison with previous $data^{2-4}$ and the TENDL-2017 $data.^{7}$

et $al^{(3)}$ and the normalized data for the (d, 2n) reaction on ⁶⁸Zn reported by Gilly *et al.*⁴) However, the data reported by Nassiff and Münzel²⁾ are much lower than the present data in the entire energy range. The TENDL-2017 data overestimate the experimental data around the peak in the energy range of 8–18 MeV. The contribution of the ${}^{67}\text{Zn}(d,n){}^{68}\text{Ga}$ reaction is small, and the 68 Zn $(d, 2n)^{68}$ Ga reaction is dominant above the threshold energy of 6.1 MeV based on the TENDL-2017 prediction. The production cross sections of co-produced radionuclides ^{65, 66, 67}Ga, ^{63, 65, 69m}Zn, ⁶¹Cu, and ⁵⁸Co were also determined. Enriched $^{68}\mathrm{Zn}$ is preferable for the production of $^{68}\mathrm{Ga}$ because radioactive isotopic impurities are not produced below 14.6 MeV, which is the threshold energy of the 68 Zn(d, 3n) 67 Ga reaction.

The physical yield of the $^{nat}Zn(d, x)^{68}Ga$ reaction was deduced from the spline-fitted curve of the measured excitation function. The derived yield reaches 2.37 GBq/ μ Ah at 23.2 MeV.

This work is supported by JSPS KAKENHI Grant Number 17K07004. Ts.Z. was granted a scholarship by the M-JEED project (Mongolian-Japan Engineering Education Development Program, J11B16).

References

- 1) S. R. Banerjee, M. G. Pomper, Appl. Radiat. Isot. 76, 2 (2013).
- 2) S. J. Nassiff, H. Münzel, Radiochem. Radioanal. Lett. 12, 353 (1972).
- 3) E. Šimečková et al., EPJ Web Conf. 146, 11034 (2017).
- 4) L. J. Gilly et al., Phys. Rev. 131, 1727 (1963).
- 5)J. F. Ziegler et al., Nucl. Instrum. Methods Phys. Res. B **268**, 1818 (2010).
- 6) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 7)A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).

Condensed from the article in Appl. Radiat. Isot. 159, 109095 (2020)

Graduate School of Biomedical Science and Engineering, Hokkaido University

^{*2} **RIKEN** Nishina Center

^{*4} School of Engineering and Applied Sciences, National University of Mongolia