
RIKEN Accel. Prog. Rep. 54 (2021)

Measurement of proton elastic scattering from 132Sn at
300 MeV/nucleon in inverse kinematics
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The equation of state (EOS) of nuclear matter is ex-
pressed as the EOS of the symmetric nuclear matter and
the symmetry energy. Particularly, the symmetry en-
ergy is important for understanding astrophysical phe-
nomena, such as neutron stars. The EOS of symmet-
ric nuclear matter is understood from previous experi-
ments on stable nuclei, however there is much less un-
derstanding of the the symmetry energy. From many
theoretical studies, it is known that the slope parame-
ter of the symmetry energy is strongly correlated with
neutron skin thickness, which is defined as the difference
between the neutron and proton root-mean-square radii.
In neutron-rich nuclei, the excess neutrons form a neu-
tron skin structure. It is expected that this symmetry
energy can be constrained by determining the neutron
skin thickness from the neutron and proton density dis-
tributions.

We employed proton elastic scattering to extract neu-
tron and proton density distributions. For stable nuclei,
we have established a method to extract the proton and
neutron density distributions using proton elastic scat-
tering.1) To employ this method to unstable nuclei with
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Fig. 1. A/Q spectrum of secondary beam including 132Sn

deduced from position and time-of-flight information at
BigRIPS. The peak of 132Sn is located at A/Q = 2.64
shown in red. The A/Q resolution in r.m.s is 0.058%.
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Fig. 2. Kinematical correlations of 132Sn between scattering
angles θ and kinematic energies of scattered protons Tp.
The red dotted line indicates elastic scattering events be-
tween 132Sn at 303.9 MeV/nucleon and protons.

large asymmetry, we started a new project to measure
the elastic scattering of protons with RI beams (ESPRI)
in inverse kinematics. We developed a recoil proton
spectrometer (RPS), which consists of a 1-millimeter-
thick solid hydrogen target (SHT2)), two multi-wire drift
chambers (MWDCs), two plastic scintillators, and four-
teen NaI rods. We measure the angle and energy of the
recoil protons from the SHT using the RPS. We success-
fully performed ESPRI measurements for several light
unstable nuclei.3)

132Sn has a larger isospin asymmetry than 208Pb, and
is expected to have a thicker neutron skin thickness. In
Novenver 2019, we performed proton elastic scattering
from 132Sn at 300 MeV/nucleon at the F12 area.4) The
total beam rate was up to 600 kcps, and the purity of
132Sn was 20%. The A/Q spectrum of the secondary
beam including 132Sn under high intensity is shown in
Fig. 1. We identified elastic events of 132Sn from the cor-
relation of the kinematic energies and recoil angles of the
scattered protons with NaI rods and MWDCs as shown
in Fig. 2. Data analysis for deducing the excitation en-
ergy spectrum of 132Sn and the angular distribution of
the cross section is now in progress.
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