Nuclear Science and Transmutation Research Division Superheavy Element Research Group

1. Abstract

The elements with their atomic number Z > 103 are called as trans-actinide or superheavy elements. This group has been studying the physical and chemical properties of superheavy elements. They must be produced by artificially for the scientific study utilizing the accelerators in RIBF. Two teams lead the study of the superheavy elements. Superheavy Element Production Team studies various methods of efficient production of the superheavy elements and their physical and chemical properties. Superheavy Element Device Development Team develops the main experimental device, *i.e.*, the gas-filled recoil ion separator, GARIS.

The synthesis of elements having atomic numbers over 119 will be attempted with the aim of establishing nuclear synthesis technology that reaches the "island of stability" where the lifetime of atomic nuclei is expected be prolonged significantly. With the aim of constructing an ultimate nuclear model, maximum utilization will be made of key experimental devices which become fully operational in order to conduct research for the syntheses of element 119 and 120.

2. Major Research Subjects

Superheavy Element Production Team

- (1) Searching for new elements
- (2) Spectroscopic study of the nucleus of heavy elements
- (3) Chemistry of superheavy elements
- (4) Study of a reaction mechanism for fusion process Superheavy Element Device Development Team
- (5) Maintenance of GARIS, GARIS-II and development of new gas-filled recoil ion separator GARIS-III
- (6) Maintenance and development of detector and DAQ system for GARIS, GARIS-II and GARIS-III
- (7) Maintenance and development of target system for GARIS, GARIS-II and GARIS-III

3. Summary of Research Activity

(1) Searching for new elements

To expand the periodic table of elements and the nuclear chart, we will search for new elements.

(2) Spectroscopic study of the nucleus of heavy elements

Using the high sensitivity system for detecting the heaviest element, we plan to perform a spectroscopic study of nuclei of the heavy elements.

(3) Chemistry of superheavy elements

Study of chemistry of the trans-actinide (superheavy element) has just started world-wide, making it a new frontier in the field of chemistry. Relativistic effects in chemical property are predicted by many theoretical studies. We will try to develop this new field.

(4) Study of a reaction mechanism for fusion process

Superheavy elements have been produced by complete fusion reaction of two heavy nuclei. However, the reaction mechanism of the fusion process is still not well understood theoretically. When we design an experiment to synthesize nuclei of the superheavy elements, we need to determine a beam-target combination and the most appropriate reaction energy. This is when the theory becomes important. We will try to develop a reaction theory useful in designing an experiment by collaborating with the theorists.

(5) Research highlight

The discovery of a new element is one of the exciting topics both for nuclear physicists and nuclear chemists. The elements with their atomic number Z > 103 are called as trans-actinides or superheavy elements. The chemical properties of those elements have not yet been studied in detail. Since those elements do not exist in nature, they must be produced by artificially, by using nuclear reactions for the study of those elements. Because the production rate of atoms of those elements is extremely small, an efficient production and collection are key issues of the superheavy research. In our laboratory, we have been trying to produce new elements, studying the physical and chemical properties of the superheavy elements utilizing the accelerators in RIKEN.

Although the Research Group for Superheavy element has started at April 2013, the Group is a renewal of the Superheavy Element Laboratory started at April 2006, based on a research group which belonged to the RIKEN accelerator research facility (RARF), and had studied the productions of the heaviest elements. The main experimental apparatus is a gas-filled recoil ion separator GARIS. The heaviest elements with their atomic numbers, 107 (Bohrium), 108 (Hassium), 109 (Meitnerium), 110 (Darmstadtium), 111 (Roentogenium), and 112 (Copernicium) were discovered as new elements at Helmholtzzentrum fur Schwerionenforschung GmbH (GSI), Germany by using ²⁰⁸Pb or ²⁰⁹Bi based complete fusion reactions, so called "cold fusion" reactions. We have made independent confirmations of the productions of isotopes of 108th, 110th, 111th, and 112th elements by using the same reactions performed at GSI. After these work, we observed an isotope of the 113th element, ²⁷⁸113, in July 2004, in April, 2005, and in August 2012. The isotope, ²⁷⁸113, has both the largest atomic number, (Z = 113) and atomic mass number (A = 278) which have determined experimentally among the isotopes which have been produced by cold fusion reactions. We could show the world highest sensitivity for production and detection of the superheavy elements by these observations. Our results that related to ²⁷⁸113 has been recognized as a discovery of new element by a Joint Working Party of the International Union of Pure and Applied Chemistry (IUPAC) and International Union

VI. RNC ACTIVITIES

of Pure and Applied Physics (IUPAP). Finally, we named the 113th element as "Nihonium."

We decided to make one more recoil separator GARIS-II, which has an acceptance twice as large as existing GARIS, in order to realize higher sensitivity. The design of GARIS-II has finished in 2008. All fabrication of the separator will be finished at the end of fiscal year 2008. It has been ready for operation after some commissioning works.

Preparatory work for the study of the chemical properties of the superheavy elements has started by using the gas-jet transport system coupled to GARIS. The experiment was quite successful. The background radioactivity of unwanted reaction products has been highly suppressed. Without using the recoil separator upstream the gas-jet transport system, large amount of unwanted radioactivity strongly prevents the unique identification of the event of our interest. This new technique makes clean and clear studies of chemistry of the heaviest elements promising.

The spectroscopic study of the heaviest elements has started by using alpha spectrometry. New isotope, 263 Hs (Z = 108), which has the smallest atomic mass number ever observed among the Hassium isotopes, had discovered in the study. New spectroscopic information for 264 Hs and its daughters have obtained also. The spectroscopic study of Rutherfordium isotope 261 Rf (Z = 104) has done and 1.9-s isomeric state has directly produced for the first time.

Preparatory works for the study of the new superheavy elements with atomic number 119 and 120 have started in 2013. We measured the reaction products of the ²⁴⁸Cm (⁴⁸Ca, *xn*)^{296-*x*}Lv (Z = 116) previously studied by Frelov Laboratory of Nuclear Reaction, Russia, and GSI. We observed 5 isotopes in total which tentatively assigned to ²⁹³Lv, and ²⁹²Lv.

Member Director

Kosuke MORITA