VI. RNC ACTIVITIES

Nuclear Science and Transmutation Research Division
Astro-Glaciology Research Group

1. Summary of Research Activities
Our Astro-Glaciology Research Group promotes both experimental and theoretical studies to open up the new interdisciplinary research field of astro-glaciology, which combines astrophysics, astrochemistry, glaciology, and climate science.

On the experimental side, we measure isotopic and ionic concentrations in ice cores drilled at Dome Fuji station, Antarctica, in collaboration with the National Institute of Polar Research (NIPR, Tokyo). Here, the ice cores are time capsules which preserve atmospheric information of the past. In particular, the ice cores obtained around the Dome Fuji site are very unique, because they contain much more information on the stratosphere than any other ice cores obtained from elsewhere on Earth. This means that we have significant advantages in using Dome Fuji ice cores if we wish to study the Universe, since UV photons, gamma-rays, and high-energy protons emitted by astronomical phenomena affect the stratosphere. Our principal aim is thus to acquire and interpret information preserved in ice cores regarding:

- Signatures of past volcanic eruptions and solar cycles;
- Relationships between climate change and volcanic activity, and climate change and solar activity as well;
- Traces of past supernovae in our galaxy, in order to understand better the rate of galactic supernova explosions.

Moreover, we are promoting experimental projects on:

- Development of an automated laser melting sampler for analyzing ice cores with high depth resolution;
- Development of precise analytical techniques of high sensitivity for analyzing ice cores;
- The evolution of molecules in space;
- The application of analytical methods for measuring isotopes in ice cores to archaeological artifacts;

On the theoretical side, we are simulating numerically:

- Chemical effects of giant solar flares and supernovae on the Earth’s atmosphere;
- The explosive and the r-process nucleosynthesis in core-collapse supernovae.

Combining our experimental evidence and theoretical simulations, we are promoting the researches mentioned above. These all will contribute to understanding relationships between the Universe and Earth. In particular, climate change is the most critical issue facing the world in the 21st century. It is also emphasized that the frequency of supernova explosions in our galaxy has not yet been fully understood, and it is the key to understand the r-process nucleosynthesis.

Members

Director
Yuko MOTIZUKI

Special Temporary Research Scientist
Kazuya TAKAHASHI

Senior Research Scientist
Yoichi NAKAI

Technical Staff I
Yu Vin SAHOO

Senior Visiting Scientists
Yasuhide YANO
Kunihiko KODERA

Visiting Scientists
Hideharu AKIOYOSHI (Nat’l Inst. for Environmental Studies) Yosinori IIZUKA (Hokkaido Univ.)
Hisashi HAYAKAWA (Nagoya Univ.) Naoyuki KURITA (Nagoya Univ.)
Akira HORIZO (Kitami Inst. of Tech.) Hideki MADOKORO (Mitsubushi Heavy Industries, Ltd.)
Kazuho HIRUCHI (Hirosaki Univ.) Hideaki MOTOYAMA (Nat’l Inst. of Polar Res.)

Visiting Technicians
Junya HIROSE (Fusion Tech. Co., Ltd.) Yuma HASEBE (Denryoku Comp. Ctr., Ltd.)

Assistant
Keiko SUZUKI

Part-time Workers

- 245 -
List of Publications & Presentations

Publications

[Original Papers]


[Books]


[Proceedings]


高橋和也, 南武志, 藤田淳, 池田征弘, 「硫黄同位体比分析による兵庫県の遺跡出土朱の産地推定」, 兵庫県立考古博物館 研究紀要 13, 53–58 (2020).

Presentations

[International Conferences/Workshops]


[Domestic Conferences/Workshops]

中井陽一, 日高宏, 渡部直樹, 「低エネルギーイオンと低温氷表面との反応実験装置開発の現状 2」, 日本物理学会第76回年次大会, オンライン発表, 2021年3月12–15日.

北島謙生, 中井陽一, W. M. C. Sameera, 宮崎彩音, 柘植雅士, 日高宏, 香内晃, 渡部直樹, 「極低温度・低温アモルファス氷への紫外光・電子線同時照射による負の氷透過電流生成」, 原子衝突学会第45回年会, オンライン発表, 2020年12月8–10日.

菅澤佳世, 三宅芙沙, 松村万寿美, 落合悠太, 高野健太, 望月優子, 高橋和也, 中井陽一, 本山秀明, 松崎浩之, 「約100年分のドームふじアイスコア中の 10Be と 36Cl の高分解能測定による BC5480 年宇宙線イベントの調査」, 第81回応用物理学会秋季学術講演会, オンライン開催, 2020年9月8–11日.

Press Releases