N = 32 shell closure below calcium: Low-lying structure of ${}^{50}\text{Ar}^{\dagger}$

M. L. Cortés,^{*1,*2} W. Rodriguez,^{*3,*1,*4} P. Doornenbal,^{*1} A. Obertelli,^{*5,*6} J. D. Holt,^{*7,*8} J. Menéndez,^{*9,*10} K. Ogata,^{*11,*12} A. Schwenk,^{*6,*13,*14} N. Shimizu,^{*9} J. Simonis,^{*15} Y. Utsuno,^{*16,*9} K. Yoshida,^{*16} and the SEASTAR2017 Collaboration

An interesting region to study shell evolution is around Ca isotopes, where the development of shell closures for N = 32 and N = 34 has been suggested. The N = 32 sub-shell closure was evidenced by its relatively high $E(2^+)$ energy,¹⁾ and confirmed by twoproton knockout cross sections²⁾ and mass measurements.³⁾ For the N = 34 shell closure, evidence was provided by $E(2^+)$,⁴⁾ systematic mass measurements,⁵⁾ and neutron-knockout cross sections.⁶) The preservation of the N = 32 shell closure has been determined in Ti and Cr via spectroscopy, reduced transition probabilities, and precision mass measurements, while for N = 34, it has been suggested to disappear above Ca. In contrast, the recent measurement of the $E(2^+)$ of 52 Ar suggests the conservation of the N = 34 shell closure for $Z = 18.^{7}$ The first spectroscopy of ⁵⁰Ar showed a relatively high $E(2^+)$,⁸⁾ hinting at the conservation of the N = 32 shell closure below Ca. A candidate for the 4⁺ state was also reported. No further spectroscopic information is available for this very exotic nucleus. This work reports low-lying states in 50 Ar.

A beam of ⁷⁰Zn with an average intensity of 240 particle nA was fragmented on a Be target. Isotopes were identified using $BigRIPS^{9}$ and delivered to the 151.3(13)-mm-long liquid hydrogen target of MINOS¹⁰ placed in front of the SAMURAI magnet. Outgoing fragments were identified using SAMURAI and associated detectors.¹¹) The DALI2⁺ array,^{12,13} composed of 226 NaI(Tl) detectors, was used to detect the emitted γ -rays. Doppler-corrected γ -ray spectra were obtained using the reaction vertex and the velocity of the fragment reconstructed with MINOS.

Based on the spectra and $\gamma\gamma$ analysis of the proton- and neutron-knockout, inelastic-scattering, and multinucleon-removal reactions, the level scheme shown

- *1**RIKEN** Nishina Center
- *2INFN-Legnaro
- *3 Departamento de Física, Universidad Nacional de Colombia
- *4 Departamento de Física, Pontificia Universidad Javeriana *5
- IRFU, CEA, Université Paris-Saclay
- *6 Institut für Kernphysik, Technische Universität Darmstadt *7 TRIUMF
- *8 Department of Physics, McGill University
- *9 Center for Nuclear Study, The University of Tokyo
- *10Departament de Física Quàntica i Astrofísica, Universitat de Barcelona
- *11 RCNP, Osaka University
- $^{\ast 12}$ Department of Physics, Osaka City University
- *¹³ ExtreMe Matter Institute (EMMI)
- *14 Max-Planck-Institut für Kernphysik
- $^{\ast 15}$ Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität
- $^{\ast 16}$ Advanced Science Research Center, JAEA

Fig. 1. Experimental level scheme of ⁵⁰Ar.

in Fig. 1 was constructed. The two previously reported transitions and five new ones were identified. Theoretical level energies and spectroscopic factors for the proton- and neutron-knockout reactions were obtained with shell-model calculations using the SDPF-MU interaction, as well as with *ab initio* calculations using the VS-IMSRG approach. Tentative spin assignments were made based on the comparison of the calculations and the experimental results. In both calculations, states with $J^{\pi} = 2^+$ are preferably populated by the reactions, as shown in the figure. In addition, a (3^{-}) state is suggested to be populated following the proton inelastic scattering. Both theoretical calculations provide consistent results and a relatively good agreement with the experimental data, emphasizing the subshell closure at N = 32 and strengthening our understanding of shell evolution in this region.

References

- 1) A. Huck et al., Phys. Rev. C 31, 2226 (1985).
- 2) A. Gade et al., Phys. Rev. C 74, 021302 (2006).
- 3) F. Wienholtz et al., Nature 498, 346 (2013).
- 4) D. Steppenbeck et al., Nature 502, 207 (2013).
- 5) S. Michimasa *et al.*, Phys. Rev. Lett. **121**, 022506 (2018).
- 6) S. Chen et al., Phys. Rev. Lett. 123, 142501 (2019).
- 7) H. N. Liu et al., Phys. Rev. Lett. 122, 072502 (2019).
- 8) D. Steppenbeck et al., Phys. Rev. Lett. 114, 252501 (2015).
- T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 9)(2012).
- 10)A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. 11)B 317, 294 (2013).
- 12) S. Takeuchi et al., Nucl. Instrum. Methods Phys. Res. A 763, 596 (2014).
- 13) I. Murray et al., RIKEN Accel. Prog. Rep. 51, 158 (2017).

t Condensed from Phys. Rev. C. 102, 064320 (2020)