Dineutron and effective pairing forces in momentum space

M. Yamagami *1

The spatial two-neutron correlation, called dineutron correlation, is one of the unique features around the neutron drip line. The dineutron correlation has been discussed extensively in light-mass nuclei such as $^{11}\text{Li},^{1,2)}$ but it is considered to be a universal phenomenon over all mass-number regions.³⁾

We propose a new effective pairing force by focusing on the spatial structure of a neutron pair. First, we discuss the necessity by performing a threebody model calculation with the density-dependent zero-range force (DD $\delta(\mathbf{r})$ -force),^{1,2)} $V_{\delta}(\mathbf{r}_1, \mathbf{r}_2) =$ $V^{(0)} \{1 - \eta[\rho(\mathbf{r}_1)/\rho_0]\} \delta(\mathbf{r}_1 - \mathbf{r}_2)$. The DD $\delta(\mathbf{r})$ -force is widely used in nuclear structure calculations.¹⁻³⁾ It must be supplemented with a cutoff in the two-particle spectrum, $\varepsilon_1 + \varepsilon_2 \leq E_{\text{cut}}$. The parameters $V^{(0)}$ and η are adjusted for each E_{cut} so as to reproduce the properties of low-energy neutron-neutron (nn) scattering and the two-neutron energy E_{2n} of finite nuclei. The parameter $\rho_0 = 0.16 \text{ fm}^{-3}$ is the saturation density.

In Fig. 1, the root-mean-square (rms) values $k_{\rm rel}$ and $q_{\rm cm}$ of the relative and center of mass (cm) momenta of paired neutrons in ¹¹Li and ¹²Be are shown. $k_{\rm rel}$ converges, while $q_{\rm cm}$ diverges as a function of $E_{\rm cut}$ owing to undesirable coupling to high-momentum components of single-particle states in the continuum.

In order to overcome the difficulties, we consider a new effective pairing force in momentum space (k space) that has a non-local separable form (k-SEP force), $V_{\text{SEP}} = -\frac{1}{2\pi^2} V_k^{(0)} g(\mathbf{k}) g(\mathbf{k}') h(\mathbf{q}) h(\mathbf{q}')$. Here, the Yamaguchi-type form factor $g(\mathbf{k}) = 1/(\mathbf{k}^2 + \Lambda^2)$ and the Gaussian distribution $h(\mathbf{q}) = (\sqrt{\pi}q_0)^{-3}e^{-\mathbf{q}^2/q_0^2}$ for the relative momentum \mathbf{k} and the cm momentum \mathbf{q} of paired neutrons are adopted. The parameters $V_k^{(0)}$ and

Fig. 1. Relative momentum $k_{\rm rel}$ and cm momentum $q_{\rm cm}$ of the neutron pair in ¹¹Li and ¹²Be. The results using the k-SEP force and the DD $\delta(\mathbf{r})$ -force are shown.

 $\begin{array}{c} 0 \\ -4 \\ -8 \\ -12 \\ -12 \\ -16 \\ -1$

Fig. 2. Two-neutron energies E_{2n} obtained with the k-SEP force $(q_0 = 0.209 \text{ and } 0.171 \text{ fm}^{-1})$ and the DD $\delta(\mathbf{r})$ -force with fixed $E_{cut} = 40$ MeV and $\eta = 0.849$, in comparison with the experimental data.

 Λ are fixed so as to reproduce the properties of lowenergy nn scattering.⁴⁾ The parameter q_0 is fixed by the two-neutron energy E_{2n} of finite nuclei.

The $k_{\rm rel}$ and $q_{\rm cm}$ obtained with the k-SEP force are shown in Fig. 1. They converge well above $E_{\rm cut} =$ 100 MeV. Here, the parameter $q_0 = 0.209$ fm⁻¹ (0.171 fm⁻¹) is used for ¹¹Li (¹²Be). The small cm momentum $q_{\rm cm}$ indicates that the pairing correlation occurs only around the nuclear surface region in real space. The relative momentum $k_{\rm rel}$ in ¹²Be becomes larger than that in Borromean ¹¹Li owing to the high-momentum component in the bound $1p_{1/2}$ state.

The two-neutron energies E_{2n} of three-body systems can be classified into two categories as shown in Fig. 2. The Borromean nuclei (⁶He, ²²C, ¹¹Li) are well described with $q_0 = 0.209$ fm⁻¹, while $q_0 = 0.171$ fm⁻¹ for non Borromean nuclei. Because the parameter q_0 introduces a cutoff for correlations in the opening angle θ_k between \mathbf{k}_1 and \mathbf{k}_2 as $\cos \theta_k \leq q_0^2/(2k_1k_2)$ in $h(\mathbf{q})$, the pairing correlations have a more collective nature in calculation with a larger q_0 .

In conclusion, we proposed a new effective pairing force that describes well the structure of the neutron pair. It is also easily utilizable in various frameworks such as the density functional theory in k space.⁵⁾

References

- G. F. Bertsch, H. Esbensen, Ann. Phys. (NY) 209, 327 (1991).
- H. Esbensen, G. F. Bertsch, K. Hencken, Phys. Rev. C 56, 3054 (1997).
- M. Matsuo, K. Mizuyama, Y. Serizawa, Phys. Rev. C 71, 064326 (2005).
- H. Tajima, T. Hatsuda, P. van Wyk, Y. Ohashi, Sci. Rep. 9, 18477 (2019).
- 5) M. Yamagami, Phys. Rev. C 100, 054302 (2019).