Probing dilute nuclear density by antiproton-nucleus scattering[†]

K. Makiguchi,^{*1} W. Horiuchi,^{*1} and A. Kohama^{*2}

Nuclear density distributions are the basic properties of atomic nuclei. Traditionally, the charge density distributions have been measured using electron-nucleus scattering. Hadronic probes have been used to study matter density distributions, especially via proton-nucleus scattering. Recently, we proposed a practical approach to extract the nuclear surface diffuseness of unstable nuclei using proton-nucleus elastic scattering differential cross sections.^{1,2} As a natural extension of the previous study, we investigated antiproton-nucleus scattering because it could provide a different sensitivity to the nuclear structure than the proton probe because the antiproton-nucleon $(\bar{p}N)$ total cross sections are typically 3–4 times larger than those of NN at incident energies varying from a few hundreds to thousands MeV.

High-energy antiproton-nucleus reactions can be efficiently described by the Glauber model.³⁾ The total reaction and elastic scattering cross sections can be obtained by evaluating the optical phase-shift function $e^{i\chi(\mathbf{b})}$ as a function of the impact parameter vector **b**. In optical limit approximation, we have $i\chi(\mathbf{b}) = -\int \rho_N(\mathbf{r})\Gamma_{\bar{N}N}(\mathbf{b}-\mathbf{s}) d\mathbf{r}$, where $\mathbf{r} = (\mathbf{s}, z)$ with z denoting the beam direction, nucleon (N) one-body density $\rho_N(\mathbf{r})$, and antinucleon-nucleon $\bar{N}N$ profile function $\Gamma_{\bar{N}N}(\mathbf{b})$. The parameters of the profile function were determined to reproduce the $\bar{p}N$ and \bar{p} -¹²C cross-section data. The validity of the present model is demonstrated in Fig. 1. The theoretical cross sections were signifi-

Fig. 1. Elastic scattering differential cross sections for antiproton-nucleus scattering at 180 MeV/nucleon adopted from the original paper.

- *1 Department of Physics, Hokkaido University
- *² RIKEN Nishina Center

Fig. 2. Ratio of total reaction cross sections of ^{29,31}F for antiproton and proton scattering as a function of the incident energy adopted from the original paper.

cantly consistent with the experimental data without any adjustable parameter using harmonic-oscillator type density distributions that reproduce the observed charge radii.

We found that strong absorption occurs even beyond the nuclear radius owing to the large $\bar{p}N$ elementary cross sections, resulting in strong sensitivity in the nuclear tail. This sensitivity is quantified by taking an example of a possible halo nucleus 31 F, which is located at the fluorine dripline; however, the antiproton scattering on unstable nuclei is still not feasible. According to the investigations in Ref. 4) the shell gap between $0f_{7/2}$ and $1p_{3/2}$ orbits is essential and the dominance of the $(1p_{3/2})^2$ configuration forms the halo structure in ³¹F. We considered these density distributions of 31 F with $(1p_{3/2})^2$ (halo) and $(0f_{7/2})^2$ (nonhalo) dominance from Ref. 4) and calculated the ratio of the total reaction cross sections of antiproton and proton scattering. Figure 2 displays the ratios of 31 F as a function of incident energy. The ratios of ²⁹F with harmonic-oscillator type density distributions are also plotted for comparison. ³¹F with the halo tail yielded the largest ratios, while the nonhalo density produced almost the same behavior as ²⁹F, which demonstrates the advantage of antiproton scattering in the analysis of dilute density distribution.

References

- S. Hatakeyama, W. Horiuchi, A. Kohama, Phys. Rev. C 97, 054607 (2018).
- S. Hatakeyama, W. Horiuchi, A. Kohama, RIKEN Accel. Prog. Rep. 52, 7 (2019).
- R. J. Glauber, in *Lectures in Theoretical Physics*, edited by W. E. Brittin, L. G. Dunham (Interscience, New York, 1959).
- H. Masui, W. Horiuchi, and M. Kimura, Phys. Rev. C 101, 041303(R) (2020).