Transverse momentum dependence of forward neutron single spin asymmetries in polarized $p^+ + p$ collisions at $\sqrt{s} = 200$ GeV†

B. Mulilo1,*1 for the PHENIX Collaboration

The PHENIX Collaboration has, for the first time, explicitly measured the transverse momentum (p_T)-dependent single spin asymmetries (A_N) for inclusive neutrons produced in the forward region of the PHENIX detector with $\eta > 6.8$ using 2015 data. During this time, a proton with transverse polarization collided with another proton at $\sqrt{s} = 200$ GeV. Owing to the limited acceptance and resolution of the detector, the measured quantities were considerably smeared. We, therefore, corrected for the smearing in the measured p_T and azimuth (ϕ) using unfolding.1

As the physics of forward neutron production is not clearly understood, we performed detailed simulations using different event generators as input to a full GEANT3 simulation.2 The generators DPMJET3.1, PYTHIA6.1, and PYTHIA8.2 were used because diffractive processes are very differently handled. Another generator was an empirical distribution of forward neutrons in p_T, mimicking a one-pion exchange (OPE) model in which a pion balancing the momentum between the incoming proton and outgoing neutron collided with the other proton beam using PYTHIA 8. Ultra-peripheral collisions (UPCs) also play a role in forward neutron production.3 The distribution of photons was, therefore, simulated using the STARLIGHT4 generator, and the photons collided with the proton beam using PYTHIA 8. As all Monte Carlo (MC) generators were intrinsically spin independent, we simulated spin effects by re-weighting events as a function of the generated p_T ($p_{T,g}$) and azimuth (ϕ_g) with the spin states (\uparrow) and (\downarrow) randomly assigned. Furthermore, as the shape of p_T-dependent A_N is not precisely known, we used three weight forms to provide as much flexibility as possible. The weight (w) based on a polynomial of third order (Pol3), power law, and exponential forms is given by Eqs. (1), (2), and (3), respectively, with Pol3 being the most general one:

$$w = (a \cdot p_{T,g} + b \cdot p_{T,g}^2 + c \cdot p_{T,g}^3) \sin(\phi_g + \lambda \cdot \pi), \quad (1)$$

where λ (± 1) is the spin state and a, b, and c are free parameters. Accordingly, the power-law weight is,

$$w = (a \cdot p_{T,g}^b) \sin(\phi_g + \lambda \cdot \pi), \quad (2)$$

and the last parameterization is an exponential form, which eventually decays asymptotically as

$$w = a \left(1 - e^{b \cdot p_{T,g}} \right) \sin(\phi_g + \lambda \cdot \pi). \quad (3)$$

The performance of parameters, functional form, and MC generator in reproducing A_N values was evaluated by the minimum χ^2 between the measured MC and data asymmetries. The 2D spin-dependent neutron yields in p_T and ϕ were then unfolded using the TSV-DUnfold class based on a singular value decomposition (SVD)5 of the smearing response matrix. Overall A_N values were finally calculated from the unfolded yields using the left-right A_N formula5 after fitting a sine modulation having magnitude and phase as free parameters. In Fig. 1, overall A_N values rapidly increase at low p_T (< 0.1 GeV/c) and slowly level off at high p_T. With this result, the first reliable tests of mechanisms producing these asymmetries can be performed.

References