Neutron intruder states and collectivity beyond $N = 50$ towards 78Ni

F. Flavigny,*1 M. Görksa,*2 and Zs. Podolyák*3 for the RIBF196 and HiCARI Collaborations

The recent spectroscopy of 78Ni,1) together with the identification of shape coexistence just below the $N = 50$ shell closure for 80Ge2) and 79Zn,3) indicates that deformed intruder configurations could play a crucial role in low-energy structure properties in this region and towards the limits of the nuclear chart. Such configurations are predicted to originate from multi-particle-multihole excitations5) above the $N = 50$ and $Z = 28$ shell gaps pushed down in energy due to neutron-proton correlations, which enhance quadrupole collectivity. Quantifying how collectivity develops near 78Ni is crucial because it influences binding energies and the drip-line location5) with consequences for nucleosynthesis calculations relying on these inputs. Because these states involve many-particle excitations, their theoretical description is challenging, and identifying them experimentally is, thus, of prime interest to constrain models. So far, very few experimental indications of these configurations have been observed in 80Ge and 79Zn, but no direct evidence of these configurations exist for $N = 50$ or above in more exotic species.

During the RIBF196 experiment in November 2020, we sought to identify and characterize for the first time such 2p-1h intruder states in 82Ge and 81Zn which are the last two odd-even $N = 51$ isotones above 79Ni. To do so, we used neutron knockout from 84Ge and 82Zn, both having two neutrons in the $s_{1/2}d_{5/2}$ valence space above $N = 50$. This direct reaction allows the removal of one of the neutrons from the quasi-full $g_{9/2}$ orbital below $N = 50$ to selectively populate $9/2^+$ intruder states based on a $\nu(g_{9/2})^{-1}(s_{1/2}d_{5/2})^{2+}$ configuration and extract their spectroscopic factors.

In addition, the first spectroscopy of low-lying levels in 82,84Zn6) recently indicated that magicity was strictly confined to $N = 50$ in 80Zn with the onset of deformation developing towards heavier Zn isotopes. To reproduce these findings, it was demonstrated that state-of-the-art shell model calculations needed to include sufficient valence orbitals above $N = 50$ (full gds valence space) and to allow the breaking of the 78Ni core. Simultaneously to the study of the intruder states mentioned above, these low-lying states in 82Zn were populated using proton removal from 83Ga, and their lifetimes will be studied by line-shape analysis.

To reach these scientific goals, we performed an experiment in which a primary beam of 238U with a mean intensity of 60 particle nA at 345 MeV/nucleon collided with a 4-mm thick 9Be primary target at the object point of the BigRIPS separator. The secondary beam was purified using Al degraders at the F1 and F5 dispersive planes (8- and 2-mm thick). The secondary cocktail beam containing approximately 61%, 7.4% and 0.2% of 84Ge, 83Ga and 82Zn, respectively, at averaged rates of approximately 6100, 740, and 20 s$^{-1}$ impinged for 2.5 days on a 6-mm-thick 9Be target at 253, 248, and 242 MeV/nucleon. Event-by-event identification of projectiles and reaction residues in terms of the atomic number (Z) and mass-to-charge ratio (A/Q) was achieved using the TOF-$B_p-\Delta E$ method in both the BigRIPS and ZeroDegree spectrometers. A preliminary particle identification plot in BigRIPS without higher-order optical corrections is shown in Fig. 1. De-excitation γ-rays of the neutron and proton knockout residues 83Ge, 82Zn and 81Zn were detected using the HiCARI germanium array (described separately7)) surrounding the secondary reaction target. A 0.5-mm-thick lead shield was placed around the beam pipe surrounding the target to reduce the rate of low-energy atomic background in the detectors. Known and unknown transitions in 83Ge were clearly identified online. The statistics obtained in this neutron-knockout channel will allow clear identification of the states populated and their possible intruder character after careful analysis of the feeding pattern.

References
7) K. Wimmer et al., in this report.

1) LPC Caen, CNRS/IN2P3
2) GSI Helmholtzzentrum für Schwerionenforschung GmbH
3) Department of Physics, University of York