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Development of Resonant-Extraction Charge Breeder (RECB)
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In the RUNBA project,1) RI ions from ERIS2) are
accelerated in the storage ring (RUNBA) for nuclear re-
action experiments. For efficient acceleration, RI ions
should be a highly charged ion beam. Although an EBIT
type charge breeder (CB) is widely used to increase
the charge state, an efficiency of only 20% hase been
achieved do far because of finite spread in charge state
distribution.3) We developed a prototype of a resonant-
extraction charge breeder (RECB) to improve the effi-
ciency, the RECB can selectable extract only the desired
charge state ions.

In a RECB, a longitudinal electrostatic potential for
ion trapping is designed as a quadratic shape on an elec-
tron beam axis (Fig. 1). The longitudinal motion of
ions in the potential is a simple harmonic oscillation for
which the frequency depends on the mass-to-charge ra-
tio. Thus, the ion motion is excited by adding an os-
cillation to the electrostatic potential at the resonant
frequency. Then, ions of a selected charge state are ex-
tracted from the trapping regions, and the others are
left in the RECB. When we apply a time-dependent po-
tential Vtrap(z, t) = (a + b sin(ωt))z2 (z, ω, and a and
b represent the position, frequency of the potential os-
cillation, and constants, respectively), the ion motion is
described by Mathieu’s differential equation.

As shown in Fig. 1, RECB consists of an electron gun,
a solenoid coil, an electron beam collector, and 20 elec-
trodes that form the trapping potential Vtrap(z, t) using
a DC power supply and a function generator. In the
trapping region, the energy, current, and beam radius,
of the electron beam were −32 keV, 10 mA, and 0.06 mm,
respectively. Collection efficiency at the electron beam
collector was more than 99.5% when the solenoid mag-
netic field was 0.13 T. Extracted ions with an energy
of 10 keV/q from the RECB were separated by the an-
alyzing magnet, and then, they were detected with a
channeltron.

Fig. 1. The schematic diagram of the prototype RECB.
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Fig. 2. Spetrum of extracted 12C4+ ions.
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Fig. 3. Enhancement factors of extracted of 12C4+ ions.

We evaluate the performance of the potential oscilla-
tion by measuring the extracted residual gas ions (vac-
uum pressure = 5 × 10−6 Pa). Figure 2 shows an ex-
ample of a 12C4+ ion extraction where the depth of the
quadratic shape potential is 150 V and the function gen-
erator supplies a 1.0 Vpp sine wave for a short duration
of 0.5 ms with a repetition rate of 500 Hz. The red and
blue plots indicate the spectrum of the extracted 12C4+

ions from the RECB with and without the potential
oscillation (Non and Noff), respectively. We confirmed
that 12C4+ ions were extracted at their fundamental fre-
quency (90 kHz) and second order harmonic frequency
(180 kHz). The spread of the spectrum was attributed
to a distortion of the electrostatic potential produced by
the space charge of trapped ions. Figure 3 shows the en-
hancement factor estimated by the event rate for (Non −
Noff) divided by that for Noff at a frequency of 90 kHz.
The enhancements for the 12C4+ ions were 30, 42, and
9.0 times greater than those for the 12C+, 12C2+, and
H+

2 (same A/q of 12C6+) ions, respectively. In future
work, we will optimize the electrostatic potential form
to improve charge state selectivity for extraction.
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