Properties of ¹⁸⁷Ta revealed through isomeric decay[†]

P. M. Walker,^{*1} Y. Hirayama,^{*2} G. J. Lane,^{*3} H. Watanabe,^{*4,*5} G. D. Dracoulis,^{*3} M. Ahmed,^{*2,*6} M. Brunet,^{*1} T. Hashimoto,^{*7} S. Ishizawa,^{*5,*8,*2} F. G. Kondev,^{*9} Yu. A. Litvinov,^{*10} H. Miyatake,^{*2} J. Y. Moon,^{*7}

M. Mukai,^{*6,*2,*5} T. Niwase,^{*2,*5,*11} J. H. Park,^{*7} Zs. Podolyák,^{*1} M. Rosenbusch,^{*2} P. Schury,^{*2} M. Wada,^{*2,*6}

X. Y. Watanabe, $^{\ast 2}$ W. Y. Liang, $^{\ast 12}$ and F. R. $\mathrm{Xu}^{\ast 12}$

We report results from the production and separation of a low-energy beam of the neutron-rich tantalum isotope, ¹⁸⁷Ta₁₁₄, together with its high-spin isomeric state. The production process exploits multi-nucleon transfer (MNT) reactions which have been shown to be effective for making neutron-rich nuclei.¹⁾ The large angular momentum transfer in MNT reactions is a key aspect for the formation of high-spin isomers.

The experiment was performed at the RIKEN Nishina Center with the recently commissioned KEK Isotope Separation System (KISS) facility.²⁾ This is the first facility of its kind, capable of stopping heavy-ion reaction products in a high-pressure (80 kPa) argon gas cell, performing laser resonant ionization for element (Z) selectivity, and achieving mass (A) separation of the electrostatically extracted, singly charged, 20 keV ions in a dipole magnet with a resolving power $A/\Delta A = 900$.

The ¹⁸⁷Ta ions were produced by MNT reactions of a 50 particle-nA beam of ¹³⁶Xe at 7.2 MeV/nucleon, delivered by the RIKEN Ring Cyclotron. The beam was incident on a 5 μ m thick natural tungsten target at the entrance to the argon gas cell.

The 20 keV secondary beam of laser-ionized tantalum was mass separated (1.5 ions/s of ¹⁸⁷Ta) and transported to a moving-tape collection point, surrounded by a low-background, 32-element gas proportional counter with 80% of 4π solid angle for β particles and conversion electrons³) and four Super Clover germanium γ -ray detectors with a total absolute full-energy-peak efficiency of 15% at 150 keV. The tape transport was operated with equal beam-on/beam-off periods, with the radioactivity moved to a shielded location at the end of each cycle. The chosen beam-on periods were 30 s, 300 s and 1800 s, with five days of data taking.

An isomer in ¹⁸⁷Ta at 1789(13) keV had been identified in the Experimental Storage Ring at $GSI^{(4)}$ but without observation of the decay radiations. Details of the excited-state structure of ¹⁸⁷Ta have now been re-

- *³ Department of Nuclear Physics, ANU *⁴ School of Dhuring, Deibang University
- *4 School of Physics, Beihang University
 *5 PIKEN Niching Contor
- *⁵ RIKEN Nishina Center
- $^{\ast 6}~$ Graduate School of Science and Engineering, Tsukuba University
- *7 Rare Isotope Science Project, Institute for Basic Science (IBS)
 *8 Graduate School of Science and Engineering, Yamagata Uni-
- *9 Physics Di
- ^{*9} Physics Division, ANL
- $^{\ast 10}$ GSI Helmholtzzentrum für Schwerionenforschung GmbH
- *¹¹ Department of Physics, Kyushu University
- *12 School of Physics, Peking University

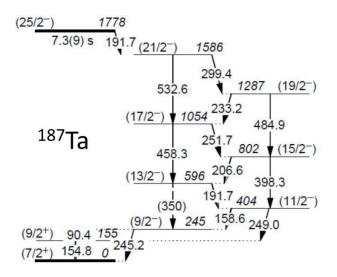


Fig. 1. Level scheme for ¹⁸⁷Ta based on γ -ray transitions observed following the decay of a $T_{1/2} = 7.3(9)$ s isomer.

vealed by the isomeric γ -ray emissions, as illustrated in Fig. 1. The isomer is found to have an excitation energy of 1778(1) keV, with a half-life of 7.3(9) s.

Despite the proximity to N = 116, which is predicted to be the critical point for a ground-state prolateoblate shape transition, the reduced hindrance for the 191.7 keV, E2 isomeric decay remains substantial, with $f_{\nu} = 27(1)$, indicating that K is approximately conserved, and therefore that axial symmetry is not strongly violated. Nevertheless, weak violation of axial symmetry is indicated by the observed irregularity in the 9/2[514] rotational band that is populated through the isomer decay. Comparison with the rhenium isotone, ¹⁸⁹Re, supports calculations showing that axial symmetry is better conserved for the lower-Z nuclei, through the $N \approx 116$ shape transition region.

The new capability to produce low-energy beams of neutron-rich tantalum isotopes and isomers demonstrates the power of the gas-stopping technique for nuclear structure studies of exotic neutron-rich nuclei, even with refractory elements. This marks a milestone on the way to the exploration of nuclei predicted to have welldeformed oblate ground states.

References

- 1) Y.X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015).
- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B 463, 425 (2020).
- M. Mukai *et al.*, Nucl. Instrum. Methods Phys. Res. B 463, 421 (2020).
- 4) M. W. Reed et al., Phys. Rev. Lett. 105, 172501 (2010).

[†] Condensed from the article in Phys. Rev. Lett. **125**, 192505 (2020)

^{*1} Department of Physics, Surrey University

^{*2} Wako Nuclear Science Center (WNSC), IPNS, KEK