Fragmentation of single-particle strength around the doubly-magic nucleus $^{132}{\rm Sn}$ and the position of the $0f_{5/2}$ proton-hole state in $^{131}{\rm In}^{\dagger}$ V. Vaquero,*1 A. Jungclaus,*1 T. Aumann,*2,*3 J. Tscheuschner,*2 E. V. Litvinova,*4 J. A. Tostevin,*5 H. Baba,*6 D. S. Ahn,*6 R. Avigo,*7,*8 K. Boretzky,*3 A. Bracco,*7,*8 C. Caesar,*2,*3 F. Camera,*7,*8 S. Chen,*9,*6 V. Derya,*10 P. Doornenbal,*6 J. Endres,*10 N. Fukuda,*6 U. Garg,*11 A. Giaz,*7 M. N. Harakeh,*3,*12 M. Heil,*3 A. Horvat,*2 K. Ieki,*13,*6 N. Imai,*14 N. Inabe,*6 N. Kalantar-Nayestanaki,*12 N. Kobayashi,*14,*6 Y. Kondo,*15,*6 S. Koyama,*14,*6 T. Kubo,*6 I. Martel,*16 M. Matsushita,*17 B. Million,*8 T. Motobayashi,*6 T. Nakamura,*15,*6 N. Nakatsuka,*6,*2 M. Nishimura,*6 S. Nishimura,*6 S. Ota,*17 H. Otsu,*6 T. Ozaki,*15,*6 M. Petri,*2 R. Reifarth,*18 J. L. Rodríguez-Sánchez,*19,*3 D. Rossi,*2 A. T. Saito,*15,*6 H. Sakurai,*6,*14 D. Savran,*3 H. Scheit,*2 F. Schindler,*2,*3 P. Schrock,*2 D. Semmler,*2 Y. Shiga,*13,*6 M. Shikata,*15,*6 Y. Shimizu,*6 H. Simon,*3 D. Steppenbeck,*6 H. Suzuki,*6 T. Sumikama,*6 D. Symochko,*2 I. Syndikus,*2 H. Takeda,*6 S. Takeuchi,*6 R. Taniuchi,*14,*6 Y. Togano,*15,*6 J. Tsubota,*15,*6 H. Wang,*6 O. Wieland,*8 K. Yoneda,*6 J. Zenihiro,*6 and A. Zilges*10 The neutron-hole and proton-hole nuclei ¹³¹Sn and ¹³¹In were studied using one-nucleon removal reactions from doubly-magic ¹³²Sn at relativistic energies. In 131 In, a 2910(50)-keV γ ray was observed for the first time, see Fig. 1, mainly thanks to the good energy and time resolution of the eight LaBr₃ detectors employed in this experiment. This high-energy γ ray was tentatively assigned to the decay of the $0f_{5/2}$ proton-hole state to the known $1/2^-$ level at 365 keV. Thus, the excitation energy of the last so far unknown protonhole state in ¹³²Sn was fixed to 3275(50) keV. From the absolute intensities of the observed γ rays, the spectroscopic factors for the $1d_{5/2}$ and $0g_{7/2}$ neutron-hole states in 131 Sn and the $1p_{3/2}$ and $0f_{5/2}$ proton-hole states in ¹³¹In were determined. They nicely agree with those of the analog states with quantum numbers $n(\ell+1)_{j+1}$ in ²⁰⁷Pb and ²⁰⁷Tl indicating that the close resemblance between the shell structures around the doubly-magic nuclei $^{132}\mathrm{Sn}$ and $^{208}\mathrm{Pb}$ established since long also holds for the spectroscopic factors. To investigate the origin of the strong fragmentation of singleparticle strength state-of-the-art calculations based on Fig. 1. Doppler-corrected γ -ray spectra of 131 In populated via one-proton removal from 132 Sn measured with a) 96 NaI crystals of DALI2 covering polar angles in the range $\theta = 50$ –150° and b) eight LaBr₃ detectors placed at $\theta = 30$ ° (adopted from Fig. 1 of the original article). - † Condensed from the article in Phys. Rev. Lett. **124**, 022501 (2020) - *1 Instituto de Estructura de la Materia, CSIC - *2 Institut für Kernphysik, TU Darmstadt - *3 GSI Helmholtzzentrum für Schwerionenforschung GmbH - *4 Department of Physics, Western Michigan University - *5 Department of Physics, University of Surrey - *6 RIKEN Nishina Center - *7 Dipartimento di Fisica dell'Università degli Studi di Milano - *8 INFN, Sezione di Milano - *9 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University - $^{\ast 10}$ Institut für Kernphysik, Universität zu Köln - *11 Department of Physics, University of Notre Dame - *12 KVI-CART - *13 Department of Physics, Rikkyo University - *14 Department of Physics, The University of Tokyo - *15 Department of Physics, Tokyo Institute of Technology - *16 Departamento de Fsica Aplicada, Universidad de Huelva *17 Center for Nuclear Study, The University of Tokyo - *18 Institut für Kernphysik, Goethe University Frankfurt - *19 Universidad de Santiago de Compostela the relativistic particle-vibration coupling model were performed. While the coupling to the first excited 3⁻ states in the core nuclei $^{132}\mathrm{Sn}$ and $^{208}\mathrm{Pb}$ was identified as the main origin for the reduced spectroscopic factors measured for the $1d_{5/2}/1f_{7/2}$ single-particle states in $^{131}\mathrm{Sn}/^{207}\mathrm{Pb}$ and the $1p_{3/2}/1d_{5/2}$ levels in $^{131}\mathrm{In}/^{207}\mathrm{Tl}$, clearly more complex coupling scenarios are responsible for the strong fragmentation and the small measured spectroscopic factors in the case of the $0g_{7/2}/0h_{9/2}$ states in $^{131}\mathrm{Sn}/^{207}\mathrm{Pb}$ and the $0f_{5/2}/0g_{7/2}$ levels in $^{131}\mathrm{In}/^{207}\mathrm{Tl}$.