Targeted alpha therapy of cancer: Evaluation of $[^{211}At]$ AAMT targeting LAT1[†]

K. Kaneda-Nakashima,^{*1,*2} Z. Zhang,^{*2} Y. Manabe,^{*1,*2} A. Shimoyama,^{*1,*2} K. Kabayama,^{*1,*2} T. Watabe,^{*1,*2}
Y. Kanai,^{*1,*3} K. Ooe,^{*1,*3} A. Toyoshima,^{*1,*2} Y. Shirakami,^{*1,*2,*3} T. Yoshimura,^{*1} M. Fukuda,^{*2,*4}
J. Hatazawa,^{*1,*3} T. Nakano,^{*2,*4} K. Fukase,^{*1,*2} and A. Shinohara^{*1,*2}

L-type amino acid transporter 1 (LAT1) is an isoform of the system L, which is Na⁺-independent neutral amino acid transport agency. LAT1 is expressed in primary human cancers originating in various organs such as the brain, lung, thymus, and skin, it is a well-known specific cancer marker. Amino acid tracers containing radioactive halogen have attracted attention for use as probes in single photon emission computed tomography (SPECT) and positron emission tomography (PET). L-3-[¹⁸F]- α -methyl-tyrosine (¹⁸F-FAMT) has higher potential for tumor specificity than 2-deoxy-2-^{[18}F] fluoroglucose (18 F-FDG), which is widely employed as a PET probe for cancer staging. Further FDG has the potential for false-positive accumulation within inflammation related to high glucose metabolism in macrophages or neutrophils, whereas ¹⁸F-FAMT accumulates in tumors via LAT1, which is expressed only in cancer cells.¹⁾ In contrast, ¹⁸F-FAMT is not transported by other isoforms of the system L (e.g., LAT2, LAT3, and LAT4), that are expressed in normal tissues.^{2,3} Therefore, our L-3- $[^{211}At]$ - α -methyl-tyrosine (^{211}At -AAMT) is expected to exhibit LAT1 specificity and to have the potential to be used as a targeting alpha therapy (TAT) treatment.

Methods

The ${}^{209}\text{Bi}(\alpha, 2n)^{211}\text{At}$ reaction using the AVF Cyclotron at the Research Center for Nuclear Physics, Osaka University (Ibaraki, Japan) was used to produce ${}^{211}\text{At}.{}^{4)}$ Further ${}^{211}\text{At}$ was produced with the same nuclear reaction at the Nishina Center for Accelerator-Based Science, RIKEN, and it was then transported to the Osaka University.

PANC-1 cells were cultured at 37°C in D-MEM containing 10% fetal bovine serum and 1% antibiotics in a humidified incubator with 5% CO2. Cultured cells were washed in PBS (-) and harvested with trypsin. Tumor xenograft models were established by the subcutaneous injection of 1×10^7 cells in 0.2 mL of serumfree medium and Matrigel (1:1) into female BALB/cnu/nu mice. PANC-1 xenograft mice (10 weeks old; body weight = 19.3 ± 1.4 g) were used when the tumor size reached approximately 50 mm³ on average.

The mice were divided into two groups according to the injected dose [0.4 MBq $(n = 4, 4.0 \pm 0.2 \text{ MBq/mL})$; control (n = 4)]. The control group only received sol-

Fig. 1. Efficacy of ²¹¹At-AAMT using the PANC-1 xenograft model. Tumor growth inhibition by ²¹¹At-AAMT (Left). Coronal images of ²¹¹At-AAMT in tumor-bearing model (Right).

vents.

Tumor sizes and body weights were measured three times per week. Mice were sacrificed when the tumor size reached more than 10% of the total weight. The mice were observed for 40 days. Uptakes were normalized by the injected dose (MBq) and body weight (g).

Results

In the PANC-1 model, the control mice were injected only with solvents (0.2 w/v% AcOH and 1 w/v% ascorbic acid solution) and the ²¹¹At-AAMT treatment group received i.v. injections of the 0.4 MBq/mouse ²¹¹At-AAMT solution. No inflammation or abnormalities were observed around the injection site. In the ²¹¹At-AAMT treatment group, the tumor growth was clearly inhibited and the body weight was not significantly decreased compared to the control group (Fig. 1).

Conclusion

²¹¹At-AAMT may be considered a novel anti-cancer drug. While ²¹¹At-AAMT could inhibit tumor growth with a single treatment, the tumor was not completely abolished, and therefore, a single injection was insufficient to decrease the tumor size continuously. Multiple doses may be necessary to exploit the high anti-tumor effect of ²¹¹At-AAMT. In conclusion, ²¹¹At-AAMT may be an effective anti-cancer drug when administered multiple times or in combination with existing anti-cancer drugs.

References

- 1) A. Achmad et al., BMC Med. Imaging 17, 66 (2017).
- 2) L. Wei et al., J. Pharmacol. Sci. 130, 101 (2016).
- 3) L. Wei et al., Cancer Sci. 107, 347 (2016).
- 4) T. Watabe et al., J. Nucl. Med. 60, 1301 (2019).

[†] Condensed from the article Cancer Sci. 112(3), 1132 (2021)

^{*1} Institute for Radiation Sciences, Osaka University

^{*&}lt;sup>2</sup> Graduate School of Science, Osaka University

^{*&}lt;sup>3</sup> Graduate School of Medicine, Osaka University

^{*4} Research Center for Nuclear Physics, Osaka University