μ SR study on the low-temperature anomaly in triangular-lattice antiferromagnet CuOHCl

I. Yamauchi,^{*1} X. G. Zheng,^{*1} and I. Watanabe^{*2}

Recently we found a new magnetodielectric triangular-lattice compound CuOHCl. It showed geometric frustration and antiferromagnetic transition at $T_{\rm N} = 11$ K. Then we observed an anomaly below ~5 K, with magnetic susceptibility and specific heat change, as well as an increase in the dielectric constant.¹

Our μ SR experiments on powder sample showed additional precession frequency for T < 5 K with an increase in its value. Considering the observed results of i) the small specific heat anomaly at 5 K; ii) the apparently stable antiferromagnetic spin arrangement revealed by neutron diffraction experiments; iii) the continuity of the other muon precession frequencies, and iv) the dielectric increase below 5 K, it is reasonable to assume a multiferroic transition occurring in CuOHCl.¹⁾ However, the mechanism for this multiferroic-like state is unclear and further study is demanded. Since we succeeded in growing single crystals, we proposed the use of single crystals for μ SR experiments. Related experiments along three crystal-axis directions were planned, but unfortunately due to limited beam time, only a part of them were performed.

As shown in Fig. 1, we observed an additional muon spin precession frequency below $T \sim 5$ K, which suggests that the low-temperature change is an intrinsic property in CuOHCl and further detailed experiments using the single crystals should be planned.

A new result has been obtained from the present experiment. LF- μ SR measurements as shown in Fig. 2 suggested a dynamical nature for the low-temperature state below ~ 5 K.

In summary, we performed ZF- μ SR and LF- μ SR on a newly found magnetodielectric compound CuOHCl using high-quality single crystals. The intrinsic nature of the low-temperature phase below $T < \sim 5$ K has been verified. Further, persisting spin fluctuations have been found to exist in the lowtemperature phase. There are only few experimental realizations of triangular-lattice, in special, multiferroic systems in slightly nonstoichiometric oxides, *i.e.*, CuFeO₂ (S = 5/2), CuCrO₂/AgCrO₂ (S = 3/2) and RbFe(MoO₄)₂(S = 5/2).²⁾ The present system provides a precious structurally two-dimensional triangular lattice showing quantum spin-related properties with perfect chemical stoichiometry.

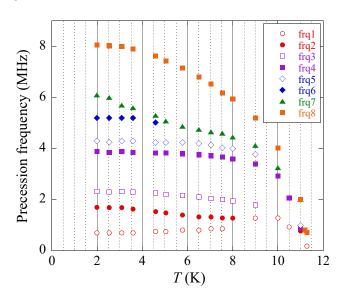


Fig. 1. Muon spin precession frequencies in single crystal CuOHCl.

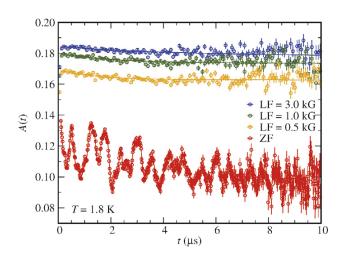


Fig. 2. μ SR asymmetries in longitudinal external fields for single crystal CuOHCl.

References

- 1) X.-G. Zheng et al., Phys. Rev. Mater. 2, 104401 (2008).
- 2) Y. Tokura, Rep. Prog. Phys. 77, 076501 (2014).

^{*1} Department of Physics, Saga University

^{*&}lt;sup>2</sup> RIKEN Nishina Center