U. Widyaiswari,^{*1,*2} H. Sakai,^{*3} H. Hanasaki,^{*3} D. P. Sari,^{*4} B. Kurniawan,^{*2} and I. Watanabe^{*1,*2}

Pyrochlore oxides have a general formula $A_2B_2O_7$, where A and B represent trivalent rare-earth and tetravalent transition metal ions, respectively. The pyrochlore oxides are constructed from the interpenetrating corner-sharing tetrahedral lattices of A and B sites.¹) The spins at vertices of the tetrahedral lattice are magnetically frustrated and can lead to various novel physical properties.¹) The magnetic frustration, competition between the exchange and dipolar interactions, and crystal electric field effect control the nature of the ground state of pyrochlore oxide.²)

Pyrochlore ruthenate, $A_2 Ru_2 O_7$, has $Ru 4d^4$ electrons in the low-spin state with S = 1. In Nd₂Ru₂O₇, both Nd and Ru are magnetic ions. The magnetic ground state of Nd₂Ru₂O₇ is an interesting research topic because we can investigate the coupling between Nd and Ru spins by comparing it with that of $Nd_2Ir_2O_7$ known to have Ir^{4+} ions with 5d electrons, and they show ferromagnetic coupling between Nd and Ir spins.³⁾ Nd₂Ru₂O₇ showed magnetic anomalies around 1.8 K, 21 K, and 146 K.^{4,5)} At 1.8 K and 146 K, the magnetic transition were attributed to the ordering of Nd and Ru spins, respectively.⁴⁾ The origin of the anomaly at 21 K remains debatable.^{4,5)} Accordingly, we investigated the magnetic properties of Nd₂Ru₂O₇ using various measurement techniques such as muon spin relaxation (μ^+ SR) measurement.

The polycrystalline Nd₂Ru₂O₇ was prepared using a solid-state reaction method. μ^+ SR experiments were carried out on an HiFi spectrometer at the ISIS, Rutherford Appleton Laboratory in the UK and on the ARTEMIS spectrometer at Material and Life Science Experiment Facility (MLF), J-PARC in Japan. We measured the μ^+ SR time spectra in the zero-field (ZF) condition at a temperature range of 2–150 K on HiFi, whereas the time spectra below 5 K down to 0.3 K were obtained by using Heliox cryostat on ARTEMIS.

The oscillations do not occur in the ZF- μ +SR time spectra of Nd₂Ru₂O₇, as shown in Fig. 1(a). However, the decreases in the initial asymmetry at t = 0 was observed by decreasing the temperature indicating the appearance of a magnetic ordered state. The time spectra were analyzed using two exponential functions as

$$A(t) = A_1 \exp(-\lambda_1 t) + A_2 \exp(-\lambda_2 t) \tag{1}$$

The first and second components of Eq. (1) correspond to the slow and fast components of muon spin relaxation, respectively, and λ represents the muon-spin relaxation

- *2 Department of Physics, Universitas Indonesia
- *3 Department of Physics, Graduate School of Science, Osaka University
- ^{*4} Innovative Global Program, Shibaura Institute of Technology

1.0 (a)⁻ Nd₂Ru₂O₇ ZF-µSR Normalized Asymmetry 70 P.0 80 80 P.0 80 2 K 30 K HiFi spectrom 120 k 145 k 150 k 0.0∟ 0 6 8 Time (µs) Nd₂Ru₂O₇ 0.3 ZF-µSR γ¹ (μs.1) 0.1 (b) 0.0∟ 0.1 10 Temperature (K)

Fig. 1. (a) ZF- μ^+ SR time spectra of Nd₂Ru₂O₇. (b) Temperature dependence of λ_1 ; the inset shows the temperature dependence of λ_2 .

rates.

The appearance of Ru ordering at 146 K is confirmed from a sharp peak observed in $\lambda_2(T)$, as shown in the inset of Fig. 1(b). λ_1 decreases below 50 K with decreasing temperature and shows a dip around 30 K; this anomaly is not related to the anomaly at 21 K observed from the DC susceptibility measurement, which was expected from the magnetic property of Nd₃RuO₇.⁶⁾ Therefore, the anomaly around 30 K in the temperature dependence of λ_1 could be related to the short-range magnetic interaction of Nd spins. The long-range ordering of Nd spins was expected to appear around 2 K, as indicated by a peak in the temperature dependence of λ_1 . Currently, we cannot determine the magnetic interaction between Nd and Ru spins. Further investigation using continuous muon beam is required to determine the internal field as a function of temperature that occurred in this system.

References

- 1) J. S. Gardner et al., Rev. Mod. Phys. 82, 53 (2010).
- 2) B. C. D. Hertog et al., Phys. Rev. Lett. 84, 3430 (2000).
- 3) R. Asih et al., J. Phys. Soc. Jpn. 86, 024705 (2017).
- S. T. Ku *et al.*, J. Phys. Condens. Matter **30**, 155601 (2018).
- M. W. Gaultois *et al.*, J. Phys. Condens. Matter 25, 186004 (2013).
- 6) U. Widyaiswari et al., Mater. Sci. Forum 1028, 3 (2021).

^{*1} RIKEN Nishina Center