μ^+ SR Knight shift of the Mott insulator κ -(ET)₄Hg_{2.78}Cl₈

D. P. Sari,^{*1,*2} Y. Cai,^{*3,*4} M. -V. deToro Sanchez,^{*5,*4} K. Kojima,^{*3,*4} I. Watanabe,^{*2} Y. Ishii,^{*1} and

H. Taniguchi^{*6}

The hole-doped organic superconductor к- $(ET)_4Hg_{3-\delta}Br_8$, (κ -HgBr), where $\delta = 11\%$ and ET= bis (ethylenedithio) tetrathiafulvalene, has been the key to bridge the knowledge gap between half-filled organics and doped cuprate systems, as the well-known Mott-Hubbard model in the laboratory. Usually, organic superconductivity appears under pressure when the ratio of Hubbard interaction and bandwidth, U/W, is larger than 1. Nonetheless, the triangular lattice of organics, unlike the square lattice in cuprates, provides extensive geometrically control through nearest, t, and next-nearest, t', transfer integrals between sites. In the case of geometrically triangular frustration $(t \sim t')$, the Mott insulating state cannot be magnetically ordered down to the miliKelvin (mK) order, becoming a Mott quantum spin liquid.¹⁾ Specifically, both holedoped superconductors have a region corresponding to a strange metallic state at which resistivity exhibits a linear temperature dependence, $\rho \propto T$, which is not a Fermi-liquid (FL) behavior. $^{1-3)}$

In 2015, an important model to study strange metal was developed by Sachdev-Ye-Kitaev (SYK).^{4,5)} It consists of Majorana fermions with random all-toall interactions, leading to quantum information science and quantum many-body physics. Although the realization of the SYK-strange metal remains complex, Tsuji-Werner theoretically found an SYK-strange metal region after an out-of-time-order correlation treatment of a multi-band Hubbard model.⁶⁾ In the strange metal region, the electron behaves as a system having a non-FL electronic scattering rate with $\rho \propto T$. In this region, the spin fluctuates strongly while adjusting the competition between the localized spin in the Mott insulating state and the itinerant one in the FL state, and U/W should be close to unity, which is known as a quantum critical point (QCP).⁶⁾ Cha et al. further showed that when the itinerant spin-1/2fermions interact via onsite U and random infiniteranged spin-spin interaction, the QCP appears with quantum spin liquid dynamics, identical to that of SYK-local spin dynamics.⁷⁾ On the other hand, the growth of antiferromagnetic spin fluctuations (AFSFs) towards low temperature without any long-range order can lead to the QCP at which a non-FL behavior is observed, like in the heavy fermion system.¹⁾

Our experiment⁸) showed that the time-reversal

symmetry is preserved in the superconducting state of κ -HgBr down to 0.3 K, narrowing the similarity down to that of cuprates despite the triangular lattice. To seek evidence of strong AFSFs towards the Mott spin-liquid ground state, we also study the sister insulating compound, which has a different doping content yet slightly higher U/W than that of κ -HgBr, κ -(ET)₄Hg_{3- δ}Cl₈ (κ -HgCl), with δ = 22%. It shows a metal-insulator transition at $T_{\rm MI} = 20$ K and ambient pressure.

The signature of strong AFSFs has been observed in κ -HgBr, in which the temperature dependence of μ^+ Knight shift, K(T), is not proportional to that of susceptibility, $\chi(T)$ in the low-temperature region below 50 K, unlike in other κ -type organic superconductors; this signature is often found in heavy-fermion system.¹⁾ One possible reason is that μ^+ probes a hyperfine coupling constant different from itinerant electrons in the high-T region and localized electrons. From the linear part of the $K-\chi$ plot from 50 to 300 K, the hyperfine coupling constant, $A_{\rm hf}$, in κ -HgBr was reported to be 166 Oe/μ_B . If this deviation is a signature of such a different hyperfine coupling constant, we naively expect a larger $A_{\rm hf}$ in κ -HgCl.

We have followed the same experimental condition to measure the μ^+ Knight shift in κ -HgCl with that of κ -HgBr.⁹) The measurement was performed using DC muon beam on the NuTime spectrometer in M15 beamline, TRIUMF Canada, in a field of 6 T. Figure 1 shows the measured μ^+ SR time spectra after Fourier transforming. From 300 down to 2 K, the central peak is gradually shifted to the positive side, and a prominent shift was detected below $T_{\rm MI}$. K(T) follows Curie-

Fig. 1. Fourier transform of μ^+ SR time spectra in the field of 6 T in κ -(ET)₄Hg_{2.78}Cl₈ measured at several temperatures, represented by colorful lines, from 276–2 K.

^{*1} College of Engineering, Shibaura Institute of Technology

^{*2} **RIKEN** Nishina Center

^{*3} SBQM Institute, University British Columbia *4

CMMS, TRIUMF

^{*5} School of Physics and Astronomy, University of Edinburg *6

Department of Physics, Saitama University

Weiss paramagnetic behavior well while $\chi(T)$ has a broad peak at 70 K. From the linear region of the K- χ plot above 100 K, our preliminary analysis obtained $A_{\rm hf} = 230(20) \text{ Oe}/\mu_{\rm B}$. The value is about 40% larger than that of κ -HgBr. Next, we are going to study the spin dynamics of κ -HgCl down to the mK order.

References

- 1) H. Oike et al., Nat. Commun. 8, 756 (2017).
- 2) B. Keimer *et al.*, Nature **518**, 179 (2015).
- H. Taniguchi *et al.*, J. Phys. Soc. Jpn. **76**, 113709 (2007).
- 4) S. Sachdev, J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
- 5) A. Kitaev, J. Suh, J. High Energy Phys. 183 (2018).
- 6) N. Tsuji, P. Werner, Phys. Rev. B **99**, 115132 (2019).
- P. Cha *et al.*, Proc. Natl. Acad. Sci. U.S.A. **31**, 18341 (2020).
- 8) D. P. Sari, RIKEN Accel. Prog. Rep. 54, S30 (2021).
- 9) K. Satoh et al., Physica B 404, 597 (2009).