μ SR study of the stabilization mechanism of antiferromagnetic state in molecular π -d system λ -(BEDT-STF)₂Fe_xGa_{1-x}Cl₄

S. Fukuoka,^{*1} Y. Ito,^{*1} A. Kawamoto,^{*1} D. P. Sari,^{*2} and I. Watanabe^{*3}

In some molecular conductors, the coexistence of strongly correlated π electrons and localized 3*d* spins is realized by introducing magnetic molecules, such as FeCl₄⁻ and FeBr₄⁻, as anion molecules. Such coexistent systems are known as π -*d* systems. In π -*d* systems, the magnetic interactions between strongly correlated π electrons and localized 3*d* spins (π -*d* interaction) give rise to interesting magnetic and conducting properties.

 λ -(BEDT-STF)₂FeCl₄, where BEDT-STF denotes bis(ethylenedithio)dithiadiselenafulvalene, exhibits an antiferromagnetic ordering at 16 K.^{1,2)} In the alloy compound of λ -(BEDT-STF)₂Fe_{0.2}Ga_{0.8}Cl₄, an antiferromagnetic ordering is observed at 8 K. In contrast, λ -(BEDT-STF)₂GaCl₄ shows no magnetic ordering down to 300 mK. These results indicate that the introduction of π -d interaction stabilizes the antiferromagnetic ground state. However, the stabilization mechanism has not yet been demonstrated. This study aims to clarify the stabilization mechanism of the antiferromagnetic ground state induced by π -d interaction.

In this study, we performed zero field (ZF) μ SR measurements below 10 K and longitudinal field (LF) μ SR measurements at base temperature and 10 K for λ -(BEDT-STF)₂Fe_{0.1}Ga_{0.9}Cl₄ (Fe-0.1) and λ -(BEDT-STF)₂Fe_{0.05}Ga_{0.95}Cl₄ (Fe-0.05), respectively.

Figure 1 shows the temperature dependence of the ZF time spectra of Fe-0.1 and Fe-0.05. In this analysis, we fitted the time spectra by the following functions.

$$A(t) = A_0 \exp(-\lambda_0 t) + G_{\rm KT}(t) + A_{\rm bg}, \qquad (1)$$

$$A(t) = A_1 \exp(-\lambda_1 t) + A_2 \cos(\omega t + \phi) \exp(-\lambda_2 t)$$

$$+A_{\mathrm{bg}},$$
 (2)

$$A(t) = A_3 \exp(-\lambda_3 t) + A_4 \exp(-\lambda_4 t) + A_{\rm bg}.$$
 (3)

Here, A_i and λ_i denote the initial asymmetries and relaxation rates, respectively. $A_{\rm bg}$ is the background contribution derived from the muons stopped in the sample holder. $G_{\rm KT}(t)$ is the Kubo-Toyabe function. ω and ϕ are the precession frequency and phase of muon spin precession, respectively. The time spectra measured at high temperatures were fitted using Eq. (1), and those of Fe-0.1 and Fe-0.05 measured below 7 K were fitted using Eqs. (2) and (3), respectively.

We confirmed that the shape of the ZF time spectra of Fe-0.1 changes below 7 K, suggesting that an antiferromagnetic transition occurs around 7 K. In contrast, no clear change was observed in the shape of the ZF time spectra down to 1.5 K for Fe-0.05. As complemen-

Fig. 1. Temperature dependence of the ZF time spectra of (a) Fe-0.1 and (b) Fe-0.05.

tary experiments, we performed ¹³C NMR measurements for λ -(BEDT-STF)₂Fe_{0.05}Ga_{0.95}Cl₄ and confirmed that no peak was observed in the temperature dependence of the spin-lattice relaxation rate $(1/T_1)$ down to 4 K. These suggest that $T_{\rm N}$ of Fe-0.05 is lower than 4 K or does not exist and antiferromagnetic ordering is drastically stabilized in the small Fe content region below x = 0.1. These results are consistent with theoretical studies suggesting that the antiferromagnetic ground state is stabilized even for small π -d interactions.³⁾ However, our results indicate that there exists a phase boundary between the no- and antiferromagnetic-ordered states in the low Fe content region between x = 0 and 0.1, which is different from the theoretical prediction. Detailed analysis regarding the development of internal fields from the results of μ SR time spectra and comparison with the results of theoretical studies are in progress.

References

- 1) S. Fukuoka et al., Phys. Rev. B 101, 184402 (2020).
- 2) S. Fukuoka et al., J. Phys. Soc. Jpn. 87, 093705 (2018).
- H. Shimahara, K. Ito, J. Phys. Soc. Jpn. 83, 114702 (2014).

^{*1} Graduate School of Science, Hokkaido University

^{*&}lt;sup>2</sup> College of Engineering, Shibaura Institute of Technology

^{*&}lt;sup>3</sup> Meson Science Laboratory, RIKEN