## Hole-doping effect on the magnetic correlation in the undoped (Ce-free) superconductor T'-La<sub>1.8</sub>Eu<sub>0.2</sub>CuO<sub>4</sub> studied by $\mu$ SR

## T. Kawamata,<sup>\*1,\*2</sup> T. Sunohara,<sup>\*2</sup> K. Shiosaka,<sup>\*2</sup> T. Nagaoka,<sup>\*2</sup> T. Adachi,<sup>\*1,\*3</sup> M. Kato,<sup>\*2</sup> I. Watanabe,<sup>\*1</sup> and Y. Koike<sup>\*1,\*2</sup>

The electronic state of the high- $T_c$  cuprate  $Ln_2CuO_4$  (Ln: lanthanide elements) with the Nd<sub>2</sub>CuO<sub>4</sub>-type (so-called T'-type) structure has attracted great interest, because adequately oxygenreduced samples of  $T'-Ln_2CuO_4$  have been reported to show superconductivity without electron-carrier doping.<sup>1,2)</sup> Regarding the electron-doped (Ce-doped) high- $T_{\rm c}$  superconductors T'- $Ln_{2-x}$ Ce<sub>x</sub>CuO<sub>4</sub>, it has been believed since their discovery that superconductivity appears at x > 0.14, while an antiferromagnetic (AF) long-range order is developed in oxygen-reduced samples with  $x < 0.14^{3}$  Hence, the reason why superconductivity emerges without carrier doping in the undoped (Ce-free) superconductor  $T'-Ln_2CuO_4$  has yet to be clarified.

Two reasons have been suggested for the electronic state of the undoped superconductivity in T'- $Ln_2CuO_4$ . One is a strongly correlated metallic state without a charge-transfer (CT) gap between the upper Hubbard band (UHB) of  $Cu3d_{x^2-y^2}$  and the O2pband.<sup>4)</sup> In this case, the half-filled Fermi surface with a good nesting condition is formed from UHB of  $Cu3d_{x^2-y^2}$  and the O2p band, indicating a strong AF correlation. Therefore, the AF correlation is expected to be weakened by electron- and hole-carrier doping, leading to a bad nesting condition. The other is a strongly correlated metallic state with a finite CT gap and the UHB of  $Cu3d_{x^2-y^2}$  having been doped with electron carriers due to oxygen defects induced by reduction annealing.<sup>5)</sup> That is, superconductivity appears due to electron-carrier doping of the Mott insulator. In this case, the AF correlation is expected to arise due to hole doping corresponding to a decrease in the electron-carrier concentration. Accordingly, an investigation of changes in the AF correlation caused by hole doping of the undoped superconductor  $T'-Ln_2CuO_4$ is expected to reveal why superconductivity emerges without carrier doping.

We performed muon spin relaxation ( $\mu$ SR) experiments on the polycrystalline samples of T'-La<sub>1.8-x</sub>Eu<sub>0.2</sub>Sr<sub>x</sub>CuO<sub>4</sub> (x = 0.01, 0.02, 0.03), whereby the undoped (Ce-free) superconductor T'-La<sub>1.8</sub>Eu<sub>0.2</sub>CuO<sub>4</sub> was doped with hole carriers.

It is found that the  $\mu$ SR spectra at high temperatures above 100 K show a Gaussian-type slow depolarization of the muon spins and that the  $\mu$ SR spectra change to Lorentzian-type fast depolarization gradually with decreasing temperature for all x. The depolarization at low temperatures is the slowest for x = 0.03 in all samples, indicating that the AF correlation becomes weak at x = 0.03. The AF transition temperature,  $T_{\rm N}$ , is estimated from the analysis of the  $\mu$ SR spectra and is plotted together with  $T_{\rm N}$ of the electron-doped and undoped superconductors T'-La<sub>1.8</sub>Eu<sub>0.2</sub>CuO<sub>4-y</sub>F<sub>y</sub><sup>6)</sup> in Fig. 1. It is found that  $T_{\rm N}$  has a maximum for x = 0.01 and it decreases by both hole and electron doping. These results are incompatible with a finite CT-gap model in which  $T_{\rm N}$ increases with Sr substitution of the AF Mott insulator. Therefore, the present results suggest that the electronic state of the undoped superconductor T'- $La_{1,8}Eu_{0,2}CuO_4$  is a strongly correlated metallic state without a CT gap. $^{4)}$ 



Fig. 1. Doped-carrier concentration dependence of the magnetic transition temperature,  $T_{\rm N}$ , of T'-La<sub>1.8-x</sub>Eu<sub>0.2</sub> Sr<sub>x</sub>CuO<sub>4</sub> and T'-La<sub>1.8</sub>Eu<sub>0.2</sub>CuO<sub>4-y</sub>F<sub>y</sub>.<sup>6</sup>) Green solid circles indicate the critical temperature,  $T_{\rm c}$ , of T'-La<sub>1.8-x</sub>Eu<sub>0.2</sub>Sr<sub>x</sub>CuO<sub>4</sub><sup>2</sup>) and T'-La<sub>1.8</sub>Eu<sub>0.2</sub>CuO<sub>4-y</sub>F<sub>y</sub>.<sup>7</sup>) Solid line is guide for the eyes. Arrows indicate that samples are not antiferromagnetic above ~3.8 K.

## References

- 1) O. Matsumoto  $et\ al.,$  Physica C $\mathbf{469},\ 924\ (2009).$
- 2) T. Takamatsu et al., Phys. Procedia 58, 46 (2014).
- 3) Y. Tokura *et al.*, Nature **337**, 345 (1989).
- 4) T. Adachi $et \ al.,$  J. Phys. Soc. Jpn. 82, 063713 (2013).
- 5) M. Horio $et\ al.,$  Nat. Commun. 7, 10567 (2016).
- 6) T. Kawamata  $et \ al.$  (unpublished).
- 7) T. Sunohara et al., J. Phys. Soc. Jpn. 89, 014701 (2020).

<sup>\*1</sup> RIKEN Nishina Center

<sup>\*&</sup>lt;sup>2</sup> Department of Applied Physics, Tohoku University

<sup>\*&</sup>lt;sup>3</sup> Department of Engineering and Applied Sciences, Sophia University