Isothermal gas chromatography study of Zr and Hf tetrachlorides using radiotracers of ⁸⁸Zr and ¹⁷⁵Hf—Towards investigation of gas-phase chemistry of Rf—[†]

K. Shirai,^{*1} S. Goto,^{*1,*2} K. Ooe,^{*3} and H. Kudo^{*4,*2}

The gas-phase chemical study of Rf, Z = 104, has been carried out for its tetrachloride together with ZrCl₄ and HfCl₄, which are homologues of Rf in the periodic table.¹⁾ Zvára pointed out that the reported values of adsorption enthalpy ($\Delta_{ads}H$) were quite different between experiments and attributed this to the differences in the modification of the surface of the quartz glass column by different chlorinating reagents.²⁾ To overcome this problem, the present study aimed at obtaining reliable $\Delta_{ads}H$ values of ZrCl₄ and HfCl₄ by using isothermal gas chromatography.

The apparatus consisted of four components: (i) a reaction part; (ii) a chloride collection part; (iii) an isothermal part; and (iv) a measurement part. Parts (i)–(iii) were heated individually using an electric tube furnace, and part (iv) was cooled with water to collect the chloride passed through the isothermal collumn. A straight quartz glass tube passed through the four parts. The inner diameter of the isothermal part was 4 mm, and its length was 30 cm.

The radioactive tracers of ⁸⁸Zr and ¹⁷⁵Hf were produced via ⁸⁹Y(d, 3n) and ^{nat}Lu(d, xn) reactions, respectively, by a 24 MeV deuteron beam supplied by the RIKEN K70 AVF cyclotron. Zr and Hf tracers were reacted with CCl₄ at 600°C for 90 min, and the formed chloride was collected on carbon filter put upstream of the isothermal part. Then, the chloride was evaporated at 400°C, and cumulative yields of the chloride were obtained with γ -ray measurement.

The surface-chlorinated quartz column was examined to study the effect of the surface state of the column on the behaviors of $ZrCl_4$ and $HfCl_4$ in the isothermal chromatography. The column was chlorinated with CCl_4 at 600°C for 2 h. After the chlorination, the $ZrCl_4$ and $HfCl_4$ chromatography was carried out. Chromatography experiments were performed at column tempetatures of 135–160°C for the non-treated column and at 100–140°C for the chlorinated column.

In the column-migration model applied to isothermal chromatography,³⁾ the average retention time (\bar{t}_r) is expressed as the following equation:

$$\ln\left(\bar{t}_{\rm r}\sqrt{T_{\rm iso}}\right) = -\frac{\varDelta_{\rm ads}H}{R}\frac{1}{T_{\rm iso}} + k$$

- *³ Graduate School of Medicine, Osaka University
- ^{*4} Faculty of Science, Niigata University

Fig. 1. Plot of $\ln(\bar{t}_r\sqrt{T_{iso}})$ versus $1/T_{iso}$ for ZrCl_4 (a) and HfCl_4 (b). Triangles and circles indicate the type of the column, non-treated and chlorinated, respectively. The solid lines are the results of a least-square fitting.

where k is a constat value including the experimental parameters. Therefore, a plot of $\ln(\bar{t}_{\rm r}\sqrt{T_{\rm iso}})$ against $1/T_{\rm iso}$ is expected to yield a straight line and from its slope, $\Delta_{\rm ads}H$ can be obtained independent of the ambiguous experimental parameters.

Figure 1 plots the results of $\ln(\bar{t}_{\rm r}\sqrt{T_{\rm iso}})$ against $1/T_{\rm iso}$. From the slopes of the fitted lines, the values of $\Delta_{\rm ads}H$ free from parameters were obtained for the first time and those of ZrCl₄ and HfCl₄ for the non-treated column were -101.3 ± 4.0 kJ mol⁻¹ and -98.1 ± 3.1 kJ mol⁻¹, respectively. For the chlorinated column, $\Delta_{\rm ads}H$ of ZrCl₄ was -85.1 ± 4.5 kJ mol⁻¹ and that of HfCl₄ was -84.2 ± 3.3 kJ mol⁻¹.

Comparing with the theoritical calculation by Pershina *et al.*,⁴⁾ in both types of column, this is more likely to include a physisorption of MCl₄. If this adsorption mechanism is adopted, RfCl₄ is expected to have an enthalpy close to that of the homologues.⁴⁾

References

- 1) A. Türler, V. Pershina, Chem. Rev. 113, 1237 (2013).
- I. Zvára, The Inorganic Radiochemistry of Heavy Elements (Springer, Switzerland, 2008).
- 3) I. Zvára, Radiochim. Acta 38, 95 (1985).
- 4) V. Pershina et al., J. Chem. Phys. 141, 064315 (2014).

[†] Condensed from the article in J. Nucl. Radiochem. Sci. 21, 7 (2021)

^{*1} Graduate School of Science and Technology, Niigata University

^{*&}lt;sup>2</sup> RIKEN Nishina Center