Determination of ²³⁶U in a Th target irradiated with Li ions by ICP mass spectrometry

A. Nagai,^{*1,*2} K. Teranishi,^{*1,*2} R. Morita,^{*1,*2} H. Hosokawa,^{*1,*3} A. Yokoyama,^{*1,*3} A. Nakajima,^{*1,*4} A. Sakaguchi,^{*1,*5} Y. Shigekawa,^{*1} A. Nambu,^{*1} T. Yokokita,^{*1} and H. Haba^{*1}

Neptunium-237 $(T_{1/2}=2.1\!\times\!10^6~{\rm y})$ released from nuclear facilities is an important radioactive target nuclide that contaminates the environment.¹⁾ The nuclide can be analyzed by accelerator mass spectrometry; however, a spike material of neptunium for the measurement has not been obtained, thus far. We previously proposed the production of neptunium-236 $(T_{1/2} = 1.5 \times 10^5 \text{ y})$ in a Th + Li reaction as a candidate for the material.^{2,3} However, the material prepared from the irradiated target may be contaminated with long-lived isobars of ²³⁶Pu and ²³⁶U, which are the decay products from ^{236m}Np, or a byproduct in the reaction. In addition, ²³⁵U contained in Th as an impurity, may also absorb neutrons and produce ²³⁶U. In this study, we aimed to determine U isotopes contained originally in the Th target as well as those produced in the nuclear reaction by High Resolution ICP-MS (HR-ICP-MS). The amount of ²³⁶U produced in the reaction can be estimated by measuring a neutron flux during irradiation through the use of a monitoring foil of Au.

We irradiated a ²³²Th target with 43 MeV ⁷Li ions at the RIKEN AVF cyclotron. Au metal foils (ca. 200 mg each) and electrodeposited U samples (ca. 1 mg each) were placed at the end of the beam course to function as a neutron monitor and a reference, respectively, as illustrated in Fig. 1.

After irradiation, the neutron flux was obtained from activation of the Au foil measured by γ -ray spectroscopy using a Ge semiconductor detector. The Uelectrodeposited sample was dissolved in a concentrated

Fig. 1. Experimental setup of neutron monitor foils (Au) and U targets attached to the end of a target holder of an irradiation beam course at RIKEN.

- *1 RIKEN Nishina Center
- *² Graduate School of Natural Science and Technology, Kanazawa University
- *³ Institute and College of Science and Engineering, Kanazawa University
- ^{*4} Master's Program in Chemistry, University of Tsukuba
- *5 Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba

Table 1. U isotopic ratios in U-electrodeposited samples by ICP-MS.

	Irradiated		Unirradiated
	U-1	U2	U-3
	Ratio%		Ratio%
235/238	0.62~0.82	0.61~0.84	0.63~0.85
236/238	0.5×0.82^{-4}	(1–7)×0.82 ^{–4}	N.D

nitrate solution. Subsequently, the solution was diluted so that the U concentration was 0.1 or 1 ng/g, as measured by HR-ICP-MS with a reference solution of XSTC-13 supplied by SPEX Industries, Inc. for calibration.

From the measurements of photopeak intensities due to ¹⁹⁸Au and ¹⁹⁶Au in the Au foils, the thermal neutron flux and fast neutron flux were $6.5 \times 10^5 \text{ s}^{-1}$ and $1.6 \times 10^7 \text{ s}^{-1}$, respectively. These values were calculated from induced radioactivities and the cross section data⁴⁾ of (n, γ) and (n, 2n) reactions. The isotope measurement results of the U-electrodeposited sample by HR-ICP-MS are shown in Table 1, where the ratios denote the range of observation due to the large dispersion of the data depending on the sample. The abundance ratios of ²³⁵U to ²³⁸U for all the samples are approximately 0.7%, corresponding to the natural abundance of U. Some events due to ²³⁶U were observed for the samples attached to the target holder. However, the events due to the unirradiated sample was less than the detection limit. It was confirmed that ²³⁶U was produced in the U-electrodeposited samples. The amount of 236 U produced agrees with the amount estimated from the thermal neutron flux by the monitor within some uncertainty of the data. Based on the measured concentration of U and the measured thermal flux, the number of ²³⁶U atoms produced in the target sample was $(0.9 - 2.0) \times 10^2$, much less than the number of 236g Np atoms estimated from the measured cross sec $tion^{(2)}$ that is, approximately 1 mb. Thus, the amount of U was concluded to be negligible to contaminate a Np tracer prepared from the irradiated target.

References

- W. Rund, G. S. Goff, in *Radionuclide in the Environ*ment, edited by D. A. Atwood (Wiley, 2013).
- Y. Hayakawa *et al.*, RIKEN Accel. Prog. Rep. 53, 179 (2020).
- A. Nakajima *et al.*, RIKEN Accel. Prog. Rep. 54, 142 (2021).
- 4) Japanese Evaluated Nuclear Data Library, JENDL-4.0, (2010), https://wwwndc.jaea.go.jp/jendl/Jendl_J. html .