Production of no-carrier-added Cr radiotracers in α -particle-induced reactions on Ti target

T. Yokokita $^{\ast 1}$ and H. Haba $^{\ast 2}$

 48 Cr is a promising radioisotope for a double photon emission computed tomography.¹) The proposed method can achieve high spatial resolution and high signal-tonoise ratio.²⁾ As ⁴⁸Cr, a pair of 112- and 308-keV photons can be used for coincidence imaging.¹⁾ We plan to produce ⁴⁸Cr in the ⁴⁶Ti(α , 2n)⁴⁸Cr reaction. In nuclear medicine, ⁴⁸Cr must be chemically separated from the target material and byproducts. In this study, we investigated a production method of no-carrier-added Cr radiotracers from an α -particle-irradiated ^{nat}Ti (nat = natural isotopic abundance) target using ⁵¹Cr ($T_{1/2}$ = 27.7 d) produced in the ^{nat}Ti $(\alpha, xn)^{51}$ Cr reaction. In the future, ⁴⁸Cr can be produced using expensive enriched ⁴⁶TiO₂ as the target material. Therefore, we also investigated the recovery of the target material after the production of the Cr radiotracers.

 $^{48,\,51}\mathrm{Cr}$ were produced in the $^{\mathrm{nat}}\mathrm{Ti}(\alpha,xn)^{48,\,51}\mathrm{Cr}$ reactions using the RIKEN AVF cyclotron. A metallic ^{nat}Ti plate of thickness 45 mg/cm^2 was irradiated for 1.69 h with a 28.9-MeV α beam of intensity 3.1 particle μ A. Upon irradiating the target, ⁴⁸V ($T_{1/2} = 16.0$ d) was also produced in the ^{nat}Ti(α, x)⁴⁸V reaction and as the electron-capture and β^+ -decay daughter of ⁴⁸Cr ($T_{1/2} =$ 21.6 h). It is desirable to remove the long-lived ^{48}V just before the imaging experiment with ${}^{48}\mathrm{Cr}$ to increase the signal-to-noise ratio.

The irradiated ^{nat}Ti plate (63.4 mg) was dissolved in a mixture of 1 mL of concentrated HF (c. HF) and 0.3 mL of c. HNO_3 by heating, and the solution was evaporated to dryness. The residue was dissolved with 1 mL of c. HF by heating, and the solution was evaporated to dryness. The residue was dissolved in 6 mL of 4.5 M HF by heating. Subsequently, the solution was fed into an anion-exchange column (Muromac 1X8, 100–200 mesh, 10 mm *i.d.* \times 110 mm height). The resin was washed with 9 mL (1 mL \times 9) of 4.5 M HF and 35 mL (5 mL \times 7) of c. HF. The 4.5 M HF fractions were combined, and 3 mL of it was used for the ICP-MS measurement to confirm the contamination of ^{nat}Ti.

The remainder of the 4.5 M HF was evaporated to dryness and further purified to remove ⁴⁸V using cationexchange chromatography. The residue was dissolved in 3 mL of 0.5 M HNO₃. The solution $(1 \text{ mL} \times 3)$ was fed into a cation-exchange column (Muromac 50WX8, 100–200 mesh, 5 mm *i.d.* \times 50 mm height). The resin was washed with 3 mL (1 mL \times 3) of 0.5 M HNO₃ and $5 \text{ mL} (1 \text{ mL} \times 5) \text{ of } 6 \text{ M HNO}_3.$

Each eluent from the anion- and cation-exchange columns were subjected to γ -ray spectrometry with a Ge detector to obtain the elution curves of ${}^{51}Cr$ and ⁴⁸V. To evaluate the elution curve of ^{nat}Ti, each c. HF

60 harge 4 5 M HF c. HF 50 40 30 20 20 10 0 10 15 20 25 30 35 40 45 50 5 0

Fig. 1. Elution curves of ⁵¹Cr, ⁴⁸V, and ^{nat}Ti for the anionexchange chromatography.

fraction was evaporated to dryness, and the residue was weighted.

The elution curves for the anion-exchange chromatography of ⁵¹Cr, ⁴⁸V, and ^{nat}Ti are shown in Fig. 1. 95% of ⁵¹Cr were eluted with 15 mL of 4.5 M HF. The decontamination factor of the ^{nat}Ti for ⁵¹Cr was 4.9×10^{-4} , indicating that the anion-exchange separation was useful in the separation of the Cr radiotracers from the target material Ti. However, the decontamination factor of ${}^{48}V$ for ${}^{51}Cr$ was not satisfied (0.83). In regards to ^{nat}Ti, 99% was eluted with 35 mL of c. HF. This high recovery yield of ^{nat}Ti is promising for recycling of the enriched ⁴⁶Ti target material.

The elution curves in the cation-exchange chromatography of ${}^{51}Cr$ and ${}^{48}V$ are shown in Fig. 2. 94% of ${}^{51}Cr$

-^-

6 M HNO

9

12

0.5 M HNO 3

6

Elution volume (mL)

80

70

60

<u>ි</u>50

040 Blution 30

20

10

0

0

⁵¹Cr

3

Charge

Department of General Education, Salesian Polytechnic

^{*2} **RIKEN** Nishina Center

was eluted with 6 mL of 0.5 M HNO₃. The decontamination factor of $^{48}\mathrm{V}$ for $^{51}\mathrm{Cr}$ was improved from 0.83 to 1.1×10^{-3} . The chemical yield of $^{51}\mathrm{Cr}$ was 90% after both the anion- and cation-exchange separations.

We propose a method for the production no-carrieradded Cr radiotracers from an α -particle-irradiated Ti target. The ⁴⁸Cr produced using the proposed method using enriched ⁴⁶TiO₂ as the target material can be used for double photon coincidence imaging experiments.

References

- 1) M. A. Choghadi et al., Radioisotopes **70**, 271 (2021).
- Y. Yoshihara *et al.*, Nucl. Instrum. Methods Phys. Res. A 873, 51 (2017).