Neopentyl glycol as a scaffold to provide radiohalogenated theranostic pairs of high *in vivo* stability^{\dagger}

H. Suzuki,^{*1} Y. Kaizuka,^{*1} M. Tatsuta,^{*2} H. Tanaka,^{*2} N. Washiya,^{*1} Y. Shirakami,^{*3} K. Ooe,^{*4} A. Toyoshima,^{*3} T. Watabe,^{*4} T. Teramoto,^{*3} I. Sasaki,^{*5} S. Watanabe,^{*5} N. S. Ishioka,^{*5} J. Hatazawa,^{*6} T. Uehara,^{*1} and Y. $Arano^{*1}$

²¹¹At is one of the most promising α -emitting radionuclides applicable to targeted α -therapy. Low-molecularweight targeting molecules are suitable for delivering ²¹¹At to target tissues because of its short half-life (7.2 h). Benzoate derivatives have been widely used to prepare radioiodinated low-molecular-weight targeting molecules of high stability against in vivo deiodination.¹⁾ Although astatine shares some chemical properties similar to those of iodine, ²¹¹At-labeled benzoate derivatives are unstable against *in vivo* deastatination.²⁾ Therefore, a new scaffold applicable to a radiotheranostic system with ²¹¹At and radioiodine needs to be developed.

We focus on a neopentyl glycol structure used for 2dihydroxymethyl-3-[¹⁸F]fluoropropyl-2-nitroimidazole $([^{18}F]DiFA, Fig. 1)$ that shows high stability against in vivo defluorination.³⁾ In this study, the neopentyl glycol structure was applied for heavier radiohalogens such as radioiodine and ²¹¹At; however, the dissociation energy of sp³ carbon-halogen bonds in alkyl halides is low and decreases with an increase in the atomic number of halogen.⁴⁾ Three neopentyl iodide compounds with or without hydroxyl groups ([¹²⁵I]**1a**, [¹²⁵I]**2**, and [¹²⁵I]**3**, Fig. 1) were synthesized to investigate the role played by the hydroxyl groups before studying with ²¹¹At-labeled compounds.

All three neopentyl iodides remained stable against the nucleophilic attack. While $[^{125}I]\mathbf{2}$ and $[^{125}I]\mathbf{3}$ were deiodinated by cytochrome P450 (CYP)-mediated metabolism, [¹²⁵I]1a remained stable against CYPmediated metabolism. The biodistribution study was correlated with the in vitro study of CYP-mediated metabolism; $[^{125}I]$ **1a** showed the lowest accumulation in the stomach and neck where free $[^{125}I]I^-$ accumulates. The liberation of $[^{125}I]I^-$ was observed via the urine analyses of $[^{125}I]\mathbf{2}$ and $[^{125}I]\mathbf{3}$ but it was not observed for $[^{125}I]$ **1a**, which indicates that the C-I bond of $[^{125}I]$ **1a** was stable against in vivo deiodination.

The structure of $[^{125}I]$ **1a** was applied for 211 At to pre-pare $[^{211}$ At]**1b**. 211 At used in this work was produced in the ${}^{209}\text{Bi}(\alpha, 2n)^{211}\text{At}$ reaction using the RIKEN AVF cyclotron. $[^{211}At]$ **1b** showed high *in vitro* stability against nucleophilic attack and the CYP-mediated metabolism.

- *4 Graduate School of Medicine, Osaka University
- *5Takasaki Advanced Radiation Research Institute, National In-

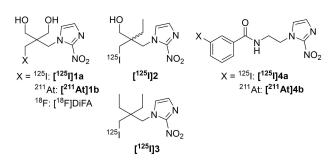


Fig. 1. Chemical structures of neopentyl and benzoate derivatives evaluated in this study.

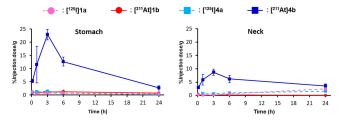


Fig. 2. Biodistribution in selected organs after the injection of $[^{125}I]$ **1a**, $[^{211}At]$ **1b**, $[^{125}I]$ **4a**, and $[^{211}At]$ **4b**.

When injected into normal mice, the radioactivity levels in the stomach and the neck registered low levels. The biodistribution profiles of $[^{211}\mathrm{At}]\mathbf{1b}$ were similar to those of $[^{125}I]$ **1a** (Fig. 2). However, the reference compound $[^{211}At]$ 4b (Fig. 1) exhibited pharmacokinetics different from $[^{125}I]$ **4a**, with high radioactivity levels observed in the stomach and the neck. Further, the urine analysis showed that $[^{211}At]At^{-}$ was liberated from $[^{211}At]4b$ but not from [²¹¹At]**1b**, which implies that the C-At bond of $[^{211}At]$ **1b** was stable against *in vivo* deastatination.

In this study, a neopentyl structure with two hydroxyl groups (neopentyl glycol) provided ¹²⁵I- and ²¹¹Atlabeled compounds with high stability against nucleophilic attack and the CYP-mediated metabolism. Furthermore, both compounds registered similar biodistribution profiles and metabolic fate. These findings indicate that neopentyl glycol would constitute a useful scaffold for developing a radiotheranostic system with radioiodine and astatine as radiolabels for further applications.

References

- 1) M. R. Zalutsky et al., Cancer. Res. 49, 5543 (1989).
- 2) G. Vaidyanathan, M. R. Zalutsky, Curr. Radiopharm. 1, 177 (2008).
- N. Nakata et al., Nucl. Med. Biol. 70, 39 (2019).
- 4) H. H. Coenen *et al.*, Radiochim. Acta **34**, 47 (1983).

t Condensed from the article in J. Med. Chem. 64, 15846 (2021)

^{*1} Graduate School of Pharmaceutical Sciences, Chiba University *2

Department of Chemical Science and Engineering, Tokyo Institute of Technology *3 Institute for Radiation Sciences, Osaka University

stitutes for Quantum Science and Technology *6

Research Center for Nuclear Physics, Osaka University