Synthesis of ^{44m}Sc-DOTA-TATE for multiple-isotope PET imaging

T. Fukuchi,^{*1} Y. Kanayama,^{*1} A. Nambu,^{*2} S. Usuda,^{*2} Y. Shigekawa,^{*2} Y. Wang,^{*2} X. Yin,^{*2} T. Yokokita,^{*2} H. Haba,^{*2} and Y. Watanabe^{*1}

Positron emission tomography (PET) is a useful tool for radio-tracer imaging in a living organism. However, conventional PET can only be adapted for a single tracer because of the energy constancy of annihilation photons, which are utilized for PET imaging. To overcome this disadvantage, we have developed a new PET system that can be used for multiple-tracer simultaneous imaging. Our PET system, named multipleisotope PET (MI-PET), detects not only annihilation photons but also prompt γ -rays, which are emitted successively after positrons. We have succeeded in proving the basic principle of MI-PET using a prototype system.¹

The MI-PET system uses a positron- γ emitter, which emits a de-excitation γ -ray after the positron emission in β^+ -decay, as a tracer, and identifies the tracer by detecting the prompt γ -ray. For the MI-PET tracer, a proper half-life, prompt γ -ray energy, and emission ratio are required by the positron- γ emitter to ensure future clinical use. One promising candidates for this type of positron- γ emitter is ⁴⁴Sc (^{44m}Sc), which emits 1157 keV prompt γ -rays (99.9%) with a half-life of 3.97 h (^{44m}Sc: 58.6 h). The imaging ability of MI-PET for ⁴⁴Sc (^{44m}Sc) has been already evaluated by several experiments using phantoms and animals.^{2,3}) Therefore, as a next step, we have begun to develop a useful drug, such as a cancer diagnosing reagent labeled by ⁴⁴Sc (^{44m}Sc). In our first attempt, we synthesized a ^{44m}Sc labelled DOTA-TATE, which is a compound containing tyrosine3-octreotate and a somatostatin receptor for numerous malignancies.

 $^{\rm 44m}{\rm Sc}$ was produced via the reaction of $^{\rm 44}{\rm Ca}(d, 2n)^{\rm 44m}{\rm Sc}$ with a 24 MeV deuterium beam and was purified by chemical processes at the RIKEN AVF cyclotron. The produced $^{\rm 44m}{\rm Sc}$ was transported to the RIKEN Kobe campus for the drug synthesis.

The labelling protocol was based on a method developed by Huclier-Markai *et al.*⁴⁾ The protocol scheme is shown in Fig. 1. DOTA-TATE (DOTA-[Tyr3]-octreotide) was purchased from BACHEM (Switzerland). A total of 2.1 nmol of DOTA-TATE and 7.7 MBq of ^{44m}Sc were resolved into 55 μ L of NaOH (0.1 M) and 200 μ L of ammonium acetate (pH 4.0, 0.25 M) and incubated at 95°C for 30 min with shaking. After incubation, 5.7 MBq of ^{44m}Sc labeled DOTA-TATE was washed out using an ion-exchange column (Sep-Pak C18 1cc Vac cartridge) by 500 μ L of ethanol.

To evaluate the radio-labeling yield, TLC analyses

Fig. 1. Scheme for synthesis of ^{44m}Sc labeled DOTA-TATE.

Fig. 2. TLC profiles of the free ^{44m}Sc and ^{44m}Sc-DOTA-TATE with developing solutions of citric acid (left), NaCl/MeOH (center), and NaCl/MeOH/NH₃ (right). An imaging plate was used for analysis.

were performed by spotting onto TLC plates (silica gel 60 F_{254}) with developing solutions of citric acid (pH 4.0), NaCl/MeOH (3 : 1), and NaCl/MeOH/NH₃ (3 : 1 : 1). The TLC results obtained through an analysis of an imaging plate are shown in Fig. 2. These results indicate that the labeling ratio for ^{44m}Sc-DOTA-TATE was above 90%.

References

- 1) T. Fukuchi et al., Med. Phys. 4, 2257 (2017).
- T. Fukuchi *et al.*, RIKEN Accel. Prog. Rep. **53**, 21 (2020).
- 3) T. Fukuchi et al., J. Instrum. 16, P01035 (2021).
- 4) S. Huclier-Markai et al., Nucl. Med. Bio. 41, e36 (2014).

^{*1} RIKEN Center for Biosystems Dynamics Research

^{*&}lt;sup>2</sup> RIKEN Nishina Center