Production cross sections of 225 Ac and 225 Ra in the 232 Th $(^{14}$ N, xnyp) reactions at 56, 79, and 98 MeV/nucleon

X. Yin,^{*1} A. Nambu,^{*1} S. Oshikiri,^{*1,*2} K. Suzuki,^{*1,*2} A. Hino,^{*2} and H. Haba^{*1}

 $^{225}\mathrm{Ac}~(T_{1/2}=10.0~\mathrm{d})$ is one of the most promising alpha-particle-emitting radionuclides for targeted radionuclide therapy.¹⁾ Its precursor, $^{225}\mathrm{Ra}~(T_{1/2}=14.9~\mathrm{d})$, is useful to generate high-purity $^{225}\mathrm{Ac}$. Thus, proton-induced reactions on $^{232}\mathrm{Th}$ to form $^{225}\mathrm{Ac}$ and $^{225}\mathrm{Ra}$ have been well investigated.²⁾ Proton beams up to 210 MeV are available for $^{225}\mathrm{Ac}$ production from RRC.

In 1991, Ambe *et al.*³⁾ proposed the production of radionuclides of a large number of elements (multitracer) by the spallation of metallic targets such as ^{nat}Cu, ^{nat}Ag, and ¹⁹⁷Au irradiated with a 135-MeV/nucleon ¹⁴N (or ¹²C, ¹⁶O) beam from RRC. With this ¹⁴N beam, ²²⁵Ac and ²²⁵Ra can be produced in the ²³²Th(¹⁴N, *xnyp*)²²⁵Ac, ²²⁵Ra reactions.⁴⁾ The cross sections are essential to verify the feasibility of the ²³²Th(¹⁴N, *xnyp*)²²⁵Ac, ²²⁵Ra reactions for practical productions of ²²⁵Ac and ²²⁵Ra with RRC. In our previous paper,⁴⁾ we reported the cross sections of the ²³²Th(¹⁴N, *xnyp*)²²⁵Ac, ²²⁵Ra reactions at 116 and 132 MeV/nucleon. In this work, the cross sections at lower energies of 56, 79, and 98 MeV/nucleon were measured to evaluate the production yields of ²²⁵Ac and ²²⁵Ra more reliably.

The target consisted of three assemblies of three metallic 232 Th foils, each with a thickness of 69 mg/cm² and size of $12.5 \times 12.5 \text{ mm}^2$. Two aluminum disks, each with a thickness of 370 mg/cm^2 and diameter of 15 mm, were interleaved between the thorium assemblies as beam energy degraders. The target was placed in a multitracer production chamber.⁵⁾ A 100.1-MeV/nucleon $^{14}N^{7+}$ beam was extracted from RRC. The target was irradiated for 2 h with an 18-particle nA intensity. After irradiation, the middle ²³²Th foils in every assembly were subjected to $\gamma\text{-ray}$ spectrometry to determine the cross sections of ²²⁵Ac and ²²⁵Ra. The beam energies on the measured 232 Th targets were calculated to be 98, 79, and 56 MeV/nucleon using the stopping power model in the LISE⁺⁺ program.⁶⁾ The cross sections of 225 Ac and 225 Ra were determined by fitting the 440-keV γ -ray intensity of ²¹³Bi ($T_{1/2} = 45.59$ min) in their radioactive decay chain.⁴)

The cross sections of 225 Ac and 225 Ra obtained in this work are shown in Fig. 1, together with those at 116 and 132 MeV/nucleon in our previous work.⁴⁾ The cross sections of 225 Ac are larger than those of 225 Ra by factors of 4.2–5.3 at 56–132 MeV/nucleon, respectively. The experimental results are compared with those calculated by the Particle and Heavy Ion Transport code System (PHITS).⁷⁾ The PHITS code reproduces the cross sec-

*1 RIKEN Nishina Center

 $(10) \frac{30}{25} + \frac{225}{3c} \frac{225}{24c} \frac{225}{24c} \frac{215}{24c} \frac{215}{24c}$

Fig. 1. Experimental and calculated excitation functions for the ²³²Th(¹⁴N, *xnyp*)²²⁵Ac, ²²⁵Ra reactions.

tions of ²²⁵Ac above 98 MeV/nucleon, while it underestimates those at the lower energies. The cross sections calculated for ²²⁵Ra by the PHITS code are larger than the experimental ones. The calculated values increase with the beam energy, while the experimental ones are independent of the beam energy. In Fig. 2, production yields of ²²⁵Ac by 135-MeV/nucleon ¹⁴N beams are compared with those by 210-MeV proton beams.²⁾ The yields of both reactions are comparable if we use a target with the same thickness in the range of 0.5–5 g/cm².

By assuming experimental conditions (incident beam energy: 132 MeV/nucleon; beam intensity: 1 particle μ A; target thickness: 4.5 g/cm²; irradiation time: 2 d), 165 MBq of ²²⁵Ac can be produced at the end of bombardment via the ²³²Th(¹⁴N, *xnyp*)²²⁵Ac reaction.

Fig. 2. Yields of 135-MeV/nucleon 14 N and 210-MeV proton beams on 232 Th targets with different thicknesses.

References

- 1) M. Ferrier et al., Radiochim. Acta 107, 1065 (2019).
- 2) J. Weidner et al., Appl. Radiat. Isot. 70, 2602 (2012).
- 3) S. Ambe et al., Anal. Sci. 7, 317 (1991).
- 4) X. Yin et al., RIKEN Accel. Prog. Rep. 54, 162 (2021).
- 5) H. Haba et al., Radiochim. Acta 93, 539 (2005).
- 6) O. B. Tarasov, D. Bazin, LISE⁺⁺ site, https://lise. nscl.msu.edu/lise.html.
- 7) Y. Iwamoto et al., J. Nucl. Sci. Technol. 54, 617 (2017).

^{*2} RI Research Department, FUJIFILM Toyama Chemical Co., Ltd.