Decay spectroscopy in exotic neutron-rich nuclei near the N = 50 shell closure

C. J. Griffin,^{*1} G. Carpenter,^{*1,*2} R. Caballero-Folch,^{*1} I. Dillmann,^{*1} R. K. Grzywacz,^{*3} K. P. Rykaczewski,^{*4} J. L. Tain,^{*5} and S. Nishimura^{*6} for the BRIKEN Collaboration

 β -decay and β -delayed neutron emission play key roles in determining the final elemental abundances of the rapid neutron-capture (r-) process. Current rprocess models rely heavily on theoretical data but, with new generations of radioactive ion beam facilities coming online, swaths of neutron-rich nuclei will become available for experimental study. Delayed neutron emission is expected to be the dominant decay mode for these newly-accessible nuclei and has been shown to be crucial in determining r-process abundances.¹⁾

In 2016, the BRIKEN collaboration constructed and commissioned the world's most efficient β -delayed neutron detector^{2,3)} at RIBF to conduct a wide-ranging and systematic study into the decay properties of hundreds of the most exotic neutron-rich nuclei currently available. The BRIKEN detector consists of 140 ³He tubes within a HDPE moderator surrounding the highly-segmented active stopper AIDA⁴⁾ and two HPGe clover detectors in close geometry.

The NP1412-RIBF127R1 experiment implemented the BRIKEN detector to measure β -delayed neutron emission probabilities and half-lives, as well as conduct decay spectroscopy studies, around the N = 50 shell closure near the doubly-magic ⁷⁸Ni. This region has been highlighted as sensitive to β -decay properties,⁵⁾ however, little to no spectroscopy data exist in this region.

The TRIUMF-based analysis focuses on γ -ray decay spectroscopy of ^{85–90}Ge, ^{88–92}As, ^{91–95}Se and ^{94–97}Br isotopes, with some high-statistics known cases at lighter masses studied for calibration. During the experiment, approximately $7.5 \cdot 10^4$ ⁸⁵Ge nuclei and $5.75 \cdot 10^6$ ⁸⁶Ge nuclei were implanted into AIDA. Figures 1 and 2 show preliminary decay spectra for the de-excitation of states within ⁸⁵As and ⁸⁶As, chosen as two of the few isotopes in this region with any previous spectroscopic data and also relatively high statistics.

With approximately two orders of magnitude fewer ⁸⁵Ge implants compared to ⁸⁶Ge, a significant fraction of the decays to ⁸⁵As are expected to come from the βn decay of ⁸⁶Ge, with its P_{1n} value of 45%.⁶⁾

Many of the peaks identified in $^{85, 86}$ As by Mazzocchi *et al.*⁷⁾ are labelled in the spectra, as well as peaks identified from decays into the daughter nuclei $^{85, 86}$ Se.^{8,9)}

- *³ Depatment of Physics and Astronomy, University of Tennessee
- ^{*4} Oak Ridge National Laboratory
- *5 Instituto de Física Corpuscular (IFIC)
- *6 RIKEN Nishina Center

Fig. 1. Preliminary γ -spectrum for decays into ⁸⁵As, considering both β - and βxn -decay modes from parent nuclei. Known peaks in ⁸⁵As are labelled in black and peaks identified from the decay of ⁸⁵As into ⁸⁵Se are in red.

Fig. 2. Preliminary γ -spectrum for decays into ⁸⁶As, considering both β - and βxn -decay modes from parent nuclei. Known peaks in ⁸⁶As are labelled in black and peaks identified from the decay of ⁸⁶As into ⁸⁶Se are in red.

Analysis of the Ge, As, Se and Br isotopes of interest is on-going and we expect to obtain the first spectroscopic data for some of these isotopes.

References

- 1) M. R. Mumpower et al., Phys. Rev. C 85, 045801 (2012).
- A. Tarifeño-Saldivia *et al.*, J. Instrum. **12**, P04006 (2017).
- A. Tolosa-Delgado *et al.*, Nucl. Instrum. Methods Phys. Res. A **925**, 133 (2019).
- C. J. Griffin *et al.*, Proc. XIII Nuclei in the Cosmos, PoS (NIC XIII), 097 (2015).
- 5) T. Shafer et al., Phys. Rev. C 94, 055802 (2016).
- 6) K. Miernik et al., Phys. Rev. Lett. 111, 132502 (2013).
- 7) C. Mazzocchi et al., Phys. Rev. C 92, 054317 (2015).
- 8) Evaluated Nuclear Structure Data File (ENSDF).
- 9) J. V. Kratz et al., Nucl. Phys. A 250, 13 (1975).

^{*1} Physical Sciences Division, TRIUMF

^{*2} School of Physics and Astronomy, University of Edinburgh