Ts. Zolbadral,^{*1,*2} M. Aikawa,^{*2,*3,*4} D. Ichinkhorloo,^{*1,*2} Kh. Tegshjargal,^{*5} N. Erdene,^{*5} Y. Komori,^{*3} H. Haba,^{*3} S. Takács,^{*6} F. Ditrói,^{*6} and Z. Szücs^{*6}

 $^{45}\mathrm{Ti}~(T_{1/2}=184.8~\mathrm{min})$ is an appropriate positron emitter isotope $(E_{\beta^+}=439~\mathrm{keV},~I_{\beta^+}=84.8\%)$ for positron emission tomography (PET). This radioisotope can be produced in the deuteron-induced reaction on a scandium-45 target at cyclotrons. However, the quality of experimental data on the cross sections of the $^{45}\mathrm{Sc}(d,2n)^{45}\mathrm{Ti}$ reaction is not satisfactory. Therefore, we aim to measure the cross sections of the $^{45}\mathrm{Sc}(d,2n)^{45}\mathrm{Ti}$ reaction and to investigate a route for $^{45}\mathrm{Ti}$ production.

The stacked-foil activation technique and γ -ray spectrometry were adopted to determine the cross sections. The stacked target included metallic foils of ${
m ^{45}Sc}$ (thicknesses of 25.8 and 250 μ m with a purity of 99.0%), ²⁷Al (18.5 μ m, 99.6%), and ^{nat}Ti (20.2 μ m, 99.6%). The target was irradiated for 30 min with a 24-MeV deuteron beam from the RIKEN AVF cyclotron. The incident beam energy was measured using the time-offlight method. The energy degradation in the stacked target was calculated using the SRIM code.¹⁾ The beam intensity was measured using a Faraday cup and doublechecked with the ^{nat}Ti $(d, x)^{48}$ V monitor reaction.²⁾ By comparing the monitor reaction, the measured intensity $(180 \pm 9 \text{ nA})$ was corrected by decreasing it by 2% to 176 ± 9 nA. The γ -ray spectra of the irradiated foils were measured using a high-resolution and a high-purity germanium (HPGe) detector. The detector was calibrated using a mixed γ -ray point source. In the measurements, the dead time was kept below 7%.

Subsequently, the activation cross sections of ^{44,45}Ti and ^{44g,44m,46}Sc were determined. The measurements of the 719.6-keV γ -ray ($I_{\gamma} = 0.154\%$) from the ⁴⁵Ti decay were used to derive the cross sections of the ⁴⁵Sc(d, 2n)⁴⁵Ti reaction. Figure 1 shows our measured excitation function of the ⁴⁵Sc(d, 2n)⁴⁵Ti reaction in comparison with previous experimental data³⁾ and the theoretical estimation retrieved from TENDL-2019.⁴⁾ The derived excitation function is consistent with the data reported by Hermanne *et al.*;³⁾ however, it is less scattered. The peak position of the TENDL-2019 data is slightly shifted to a lower energy.

The physical yield of 45 Ti was deduced from the measured excitation function and is shown in Fig. 2. The

- [†] Condensed from the article in Appl. Radiat. Isot. **168**, 109448 (2021)
- *1 Nuclear Research Center, National University of Mongolia
- *2 Graduate School of Biomedical Science and Engineering, Hokkaido University
 *3 PUKEN Nicking Contor
- *³ RIKEN Nishina Center
- *4 Faculty of Science, Hokkaido University
 *5 School of Engineering and Applied Science
- $^{*5}\,$ School of Engineering and Applied Sciences, National University of Mongolia
- *6 Institute for Nuclear Research (ATOMKI)

450 400 45Sc(d,2n)45Ti 350 300 Cross section (mb) 250 200 150 This work Hermanne 2012 100 50 TENDL-2019 0 10 15 20 25 Energy (MeV)

Fig. 1. Excitation function of the ${}^{45}Sc(d, 2n){}^{45}Ti$ reaction.

Fig. 2. Physical yield of 45 Ti.

present yield curve of ⁴⁵Ti is slightly higher than the experimental data obtained by Dmitriev *et al.*⁵⁾ at 22 MeV. ⁴⁴Ti is the only one co-produced radioactive isotope of titanium in our experiment and can be formed by (d, 3n) reaction on ⁴⁵Sc above 15 MeV. Therefore, isotopically pure ⁴⁵Ti production is possible in (d, 2n) reaction on ⁴⁵Sc in an energy range of 8–15 MeV.

This work is supported by JSPS KAKENHI Grant Number 17K07004 and partly supported by the research program between the JSPS and HAS Contract No: JPJSBP120193808 and NKM-43/2019. Ts.Z was granted a scholarship by the M-JEED project (Mongolian-Japan Engineering Education Development Program, J11B16).

References

- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 2) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- A. Hermanne *et al.*, Nucl. Instrum. Methods Phys. Res. B **270**, 106 (2012).
- 4) A. J. Koning *et al.*, Nucl. Data Sheets **155**, 1 (2019).
- 5) P. P. Dmitriev et al., INDC(CCP)-210, 1 (1983).