Activation cross sections of alpha-particle-induced reactions on natural calcium

M. Aikawa,^{*1,*2} Y. Hanada,^{*3,*2} D. Ichinkhorloo,^{*4,*2} H. Haba,^{*2} S. Takács,^{*5} F. Ditrói,^{*5} and Z. Szűcs^{*5}

We focused on the production of the therapeutic radionuclide $^{47}{\rm Sc}~(T_{1/2}=3.3492$ d) via alpha-particle-induced reactions on calcium. Owing to the relatively small abundance of $^{46}{\rm Ca}~(0.004\%)$ and $^{48}{\rm Ca}~(0.187\%)$ in natural calcium, the dominant route for $^{47}{\rm Sc}$ production is the reaction on $^{44}{\rm Ca}~(2.086\%)$. Only one experimental study was found in a literature survey, $^{1)}$ and therefore, we performed an experiment to obtain the cross sections of the $^{\rm nat}{\rm Ca}(\alpha,x)^{47}{\rm Sc}$ reaction. The production cross sections of $^{46,\,44{\rm m},\,44{\rm g},\,43}{\rm Sc}$ and $^{47}{\rm Ca}$ were also determined.

The experiment was conducted with a 29-MeV alphaparticle beam at the RIKEN AVF cyclotron. Stackedfoil activation technique and high-resolution gamma-ray spectrometry were used in the experiment. Calciumfluoride (CaF₂) deposited on a high-purity 27 Al backing foil (99.999% purity, Goodfellow Co. Ltd., UK) was used as the calcium target. In addition, two metallic foils of ^{nat}Ti (99.5% purity) for the ^{nat}Ti(α, x)⁵¹Cr monitor reaction and 27 Al (>99% purity) to catch recoiled products were purchased from Nilaco Corp., Japan. The measured average thicknesses of the ²⁷Al backing, ²⁷Al catcher and ^{nat}Ti monitor foils were 2.57, 1.50 and 2.30 mg/cm^2 , respectively. The thickness of the CaF₂ layer was 0.135 mg/cm^2 , as derived from the measured deposited area and net weight of CaF_2 . Thickness uncertainties were estimated to be 5% for the CaF_2 layer and 1% for the other foils. All foils were cut into a size of $10 \times 10 \text{ mm}^2$ to fit a target holder. Each calcium target consisted of two CaF_2 layers sandwiched with the ²⁷Al backing foils. Twelve calcium targets and seven sets of the ^{nat}Ti monitor and ²⁷Al catcher foils were stacked together in the target holder.

The stacked target was irradiated for 30 min with an alpha-particle beam. The measured average beam intensity and energy were 175 nA and 29.0 \pm 0.2 MeV, respectively. The energy degradation in the stacked target was calculated using stopping powers obtained from the SRIM code.²⁾

The high-resolution gamma-ray spectrometry using a high-purity germanium detector was performed without chemical separation. The calcium targets were measured five times with cooling times from 3.2 h to 77.0 d and dead times below 2.1%.

The derived cross sections of the $^{\rm nat}{\rm Ti}(\alpha,x)^{51}{\rm Cr}$ monitor reaction were compared with the IAEA recom-

- *3 Graduate School of Biomedical Science and Engineering, Hokkaido University
 *4 Nuclear Descent Carter National University of Manualia
- *4 Nuclear Research Center, National University of Mongolia
 *5 Institute for Nuclear Research (ATOMKI)
- *⁵ Institute for Nuclear Research (ATOMKI)

6 ^{nat}Ca(a,x)⁴⁷Sc 5 × Levkovski (1991) (⁴⁴Ca) TENDL-2019 Cross section (mb) 4 This work 3 2 1 0 0 5 10 15 20 25 30 Energy (MeV)

Fig. 1. Excitation function of the $^{nat}Ca(\alpha, x)^{47}Sc$ reaction in comparison with normalized data from the previous study¹⁾ and TENDL-2019 values.⁴⁾

mended values.³⁾ The comparison results indicated that the beam intensity and thicknesses of both ²⁷Al backing and catcher foils were corrected within the uncertainties by +5.6% and -1%, respectively. The measured thicknesses of the ^{nat}Ti monitor foil and the CaF₂ layer were adopted without any correction.

⁴⁷Sc can be produced directly from the ⁴⁴Ca(α, p)⁴⁷Sc reaction and indirectly from the decay of the coproduced parents, ⁴⁷Ca and ⁴⁷K. The indirect contribution was negligible because the co-produced parents can be formed only from the lower-abundant isotopes, ⁴⁶Ca and ⁴⁸Ca. The gamma line at 159.381 keV (I_{γ} = 68.3%) from the ⁴⁷Sc decay was measured after cooling times of 1.2–2.8 d. The derived cross sections of the $^{nat}Ca(\alpha, x)^{47}Sc$ reaction are shown in Fig. 1 in comparison with the experimental data studied earlier³) and the theoretical values provided in the TENDL-2019 library.⁴⁾ The previous data of the ${}^{44}Ca(\alpha, x){}^{47}Sc$ reaction are normalized to those using natural calcium targets. The peak of the previous data shifts to the low-energy region. The TENDL-2019 calculation largely overestimates the excitation function.

This work was supported by the Japan-Hungary Research Cooperative Program between JSPS and HUS, Grant number JPJSBP120193808 and NKM-43/2019.

References

- V. N. Levkovski, Cross Sections of Medium Mass Nuclide Activation (A = 40-100) by medium energy protons and alpha particles (E = 10-50 MeV) (Inter-Vesi, Moscow, USSR, 1991).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 3) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 4) A. J. Koning *et al.*, Nucl. Data Sheets **155**, 1 (2019).

^{*1} Faculty of Science, Hokkaido University

^{*&}lt;sup>2</sup> RIKEN Nishina Center