Measurement of production cross sections of medical isotope 110m In in alpha-particle-induced reaction on natural silver up to 50 MeV

Ts. Zolbadral, *1,*2,*3 M. Aikawa, *3,*4,*5 D. Ichinkhorloo, *1,*4 G. Damdinsuren, *3,*4 H. Huang, *3,*4 and H. Haba *4

The metastable state of indium-110 (^{110m}In) has a half-life of 69.1 min and emits positrons ($E_{\beta^+} =$ 1011 keV, $I_{\beta^+} = 61.3\%$). This radionuclide can be used to label proteins and peptides for application in positron emission tomography (PET) imaging.^{1,2)} Furthermore, ^{110m}In emits a medium-energy and highintensity γ line that is useful for $\beta + \gamma$ coincidence PET.³)

A suitable route for direct production of ^{110m}In is the α -particle-induced reaction on a silver target (¹⁰⁷Ag 51.839%, ¹⁰⁹Ag 48.161%). ^{110m}In can be produced by the (α , n) reaction ($E_{\rm thr} = 7.87$ MeV) on ¹⁰⁷Ag and the (α , 3n) reaction ($E_{\rm thr} = 24.92$ MeV) on ¹⁰⁹Ag. Because most radioactive impurities can be eliminated, the ¹⁰⁷Ag(α , n)^{110m}In reaction is a promising candidate for the production of ^{110m}In;⁴) however an isotopically enriched ¹⁰⁷Ag target is required for the reaction. The longer-lived ground state, ^{110g}In ($T_{1/2} = 4.92$ h), is co-produced in the energy region in addition to ^{110m}In. To investigate the production route of ^{110m}In, reliable data on the cross sections of the α -induced reaction on a natural silver target are required.

Thus, the main aim of this study is to measure the cross sections of the ^{nat}Ag(α, x)^{110m}In reaction and to investigate a route for ^{110m}In production.

The cross sections were determined using the stacked-foil activation technique and γ -ray spectrometry. Pure metallic foils of ^{nat}Ag (thickness of 10.1 mg/cm² with a purity of 99.9%) and ^{nat}Ti (thickness of 2.2 mg/cm² with a purity of 99.5%) were stacked to form the target.

The stacked target was irradiated for 30 min with a 50.2-MeV α -particle beam from the RIKEN AVF cyclotron. The energy of the incident beam was measured using the time-of-flight method. The SRIM code⁵) was used to calculate the energy degradation in the stacked target. The beam intensity was 213 nA measured with a Faraday cup.

A high-resolution high-purity germanium (HPGe) detector was used to measure the γ -ray spectra of the irradiated foils. The detector was calibrated by a mixed γ -ray point source. In the measurements, the dead time was less than 10%.

The cross sections of the $^{\rm nat}{\rm Ag}(\alpha,x)^{110{\rm m}}{\rm In}$ reaction were derived from the measurements of the 657.75-keV

Fig. 1. Excitation function of the $^{\rm nat}{\rm Ag}(\alpha,x)^{110{\rm m}}{\rm In}$ reaction with previous experimental data $^{6,7)}$ and the TENDL-2019 values. $^{8)}$

 γ line ($I_{\gamma} = 97.74\%$) from the ^{110m}In decay.

Figure 1 shows the preliminary results of the measured excitation function of the ^{nat}Ag(α, x)^{110m}In reaction in comparison with recent experimental data reported by Shahid *et al.*,⁶⁾ Takács *et al.*,⁷⁾ and the theoretical estimation from TENDL-2019.⁸⁾

Our measured excitation function of the ^{nat}Ag(α , x)^{110m}In reaction is consistent with those of the previous experimental data sets^{6,7)} within uncertainties, however, the peak position of our result shifts slightly to lower energy.

The TENDL-2019 data show partial agreement with the experimental data sets. The second peak in the higher-energy region is much larger than the experimental data.

References

- 1) M. Lubberink et al., J. Nucl. Med. 43, 1391 (2002).
- V. Tolmachev *et al.*, Biochim. Biophys. Acta, Gen. Subj. **1800**, 487 (2010).
- 3) M. Sitarz et al., Appl. Radiat. Isot. 155, 108898 (2020).
- F. Tárkányi *et al.*, Nucl. Instrum. Methods Phys. Res. B **351**, 6 (2015).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- M. Shahid *et al.*, J. Radioanal. Nucl. Chem. **311**, 1971 (2017).
- S. Takács *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 2 (2010).
- 8) A. J. Koning *et al.*, Nucl. Data Sheets **155**, 1 (2019).

^{*1} Nuclear Research Center, National University of Mongolia

^{*&}lt;sup>2</sup> New Mongolia College of Technology

^{*&}lt;sup>3</sup> Graduate School of Biomedical Science and Engineering, Hokkaido University

^{*4} RIKEN Nishina Center

^{*5} Faculty of Science, Hokkaido University