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Measurement of production cross sections of medical isotope 110mIn
in alpha-particle-induced reaction on natural silver up to 50 MeV

Ts. Zolbadral,∗1,∗2,∗3 M. Aikawa,∗3,∗4,∗5 D. Ichinkhorloo,∗1,∗4 G. Damdinsuren,∗3,∗4 H. Huang,∗3,∗4 and
H. Haba∗4

The metastable state of indium-110 (110mIn) has
a half-life of 69.1 min and emits positrons (Eβ+ =
1011 keV, Iβ+ = 61.3%). This radionuclide can be
used to label proteins and peptides for application in
positron emission tomography (PET) imaging.1,2) Fur-
thermore, 110mIn emits a medium-energy and high-
intensity γ line that is useful for β + γ coincidence
PET.3)

A suitable route for direct production of 110mIn is the
α-particle-induced reaction on a silver target (107Ag
51.839%, 109Ag 48.161%). 110mIn can be produced by
the (α, n) reaction (Ethr = 7.87 MeV) on 107Ag and
the (α, 3n) reaction (Ethr = 24.92 MeV) on 109Ag. Be-
cause most radioactive impurities can be eliminated,
the 107Ag(α,n)110mIn reaction is a promising candi-
date for the production of 110mIn;4) however an isotopi-
cally enriched 107Ag target is required for the reaction.
The longer-lived ground state, 110gIn (T1/2 = 4.92 h),
is co-produced in the energy region in addition to
110mIn. To investigate the production route of 110mIn,
reliable data on the cross sections of the α-induced re-
action on a natural silver target are required.
Thus, the main aim of this study is to measure the

cross sections of the natAg(α,x)110mIn reaction and to
investigate a route for 110mIn production.

The cross sections were determined using the
stacked-foil activation technique and γ-ray spectrom-
etry. Pure metallic foils of natAg (thickness of
10.1 mg/cm2 with a purity of 99.9%) and natTi (thick-
ness of 2.2 mg/cm2 with a purity of 99.5%) were
stacked to form the target.
The stacked target was irradiated for 30 min with a

50.2-MeV α-particle beam from the RIKEN AVF cy-
clotron. The energy of the incident beam was mea-
sured using the time-of-flight method. The SRIM
code5) was used to calculate the energy degradation
in the stacked target. The beam intensity was 213 nA
measured with a Faraday cup.
A high-resolution high-purity germanium (HPGe)

detector was used to measure the γ-ray spectra of
the irradiated foils. The detector was calibrated by
a mixed γ-ray point source. In the measurements, the
dead time was less than 10%.
The cross sections of the natAg(α,x)110mIn reaction

were derived from the measurements of the 657.75-keV
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Fig. 1. Excitation function of the natAg(α,x)110mIn re-

action with previous experimental data6,7) and the

TENDL-2019 values.8)

γ line (Iγ = 97.74%) from the 110mIn decay.
Figure 1 shows the preliminary results of the mea-

sured excitation function of the natAg(α,x)110mIn re-
action in comparison with recent experimental data
reported by Shahid et al.,6) Takács et al.,7) and the
theoretical estimation from TENDL-2019.8)

Our measured excitation function of the natAg(α,
x)110mIn reaction is consistent with those of the pre-
vious experimental data sets6,7) within uncertainties,
however, the peak position of our result shifts slightly
to lower energy.
The TENDL-2019 data show partial agreement with

the experimental data sets. The second peak in the
higher-energy region is much larger than the experi-
mental data.
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