Production cross sections of ¹⁵³Sm via alpha-particle-induced reactions on natural neodymium

M. Aikawa,^{*1,*2,*3} M. Sakaguchi,^{*2,*3} N. Ukon,^{*4,*3} Y. Komori,^{*3} H. Haba,^{*3} N. Otsuka,^{*5} and S. Takács^{*6}

Samarium radionuclides ¹⁵³Sm ($T_{1/2} = 46.3$ h) and 145 Sm ($T_{1/2} = 340$ d) can be used to treat bone metastases¹) and for brachytherapy,²) respectively. We investigated the production of the radionuclides via alpha-particle-induced reactions on natural neodymium.³⁾ However, the measured cross sections of the ^{nat}Nd(α, x)¹⁵³Sm reaction exhibit significant deviations from a previously published experimental study.⁴⁾ More specifically, the peak amplitude of the cross sections was different from each other by a factor of more than two. Therefore, we performed additional experiments to measure the activation cross sections of the reactions with an emphasis on the peak amplitude of the ^{nat}Nd(α, x)¹⁵³Sm reaction.

Accordingly, two experiments (#1 and #2) were performed at the RIKEN AVF cyclotron using the stackedfoil activation technique and high-resolution gamma-ray spectrometry. Two targets of the experiments were composed of pure metallic foils of ^{nat}Nd (99% purity, Goodfellow Co., Ltd., UK) and ^{nat}Ti (99.6% purity, Nilaco Corp., Japan). The ^{nat}Ti foils were utilized for monitoring the beam via the ^{nat}Ti $(\alpha, x)^{51}$ Cr monitor reaction and for beam-energy degradation. The average foil thicknesses, derived from the size and weight of the original ^{nat}Nd and ^{nat}Ti foils, were 16.7 and 2.25 mg/cm², respectively. The original foils were cut into a size of 10×10 mm. The two stacked targets with different configurations of six ^{nat}Nd and fourteen ^{nat}Ti target foils were placed in target holders that served as Faraday cups.

Both stacked targets were irradiated for 33 min with 28.9 ± 0.2 -MeV alpha-particle beams. The energy degradation of the beams in the stacked targets were computed using stopping powers obtained from the SRIM code.⁵⁾ The average beam intensities measured by the Faraday cups were 103 nA (#1) and 104 nA (#2), respectively. Gamma rays emitted from the irradiated foils were measured without chemical separation using high-purity germanium detectors. To deduce activation cross sections, nuclear data were retrieved from the online database, NuDat $3.0.^{6}$

Cumulative cross sections of $^{153}{\rm Sm}$ including contribution form decay of $^{153}{\rm Pm}$ $(T_{1/2}$ = 5.25 min) via the alpha-particle-induced reactions on natural neodymium were determined. The cross sections were derived from

- *4Advanced Clinical Research Center, Fukushima Medical Universitv
- *5 Nuclear Data Section, IAEA

1 0.5 0 0 10 20 30 40 50 Alpha-particle energy (MeV) Fig. 1. Cross sections of the $^{nat}Nd(\alpha, x)^{153}Sm$ reaction with

previous experimental $data^{3,4}$ and a theoretical prediction of the TENDL-2019 values.⁷)

measured net counts of the gamma line at 103.18 keV (I_{γ} = 29.25%), which was emitted from the decay of 153 Sm. The attenuation of the low-energy gamma rays in the ^{nat}Nd foil was calculated using the X-ray mass attenuation coefficients⁷) and estimated to be 2.1%. The cross sections were determined using the corrected counts. The preliminary results are depicted in Fig. 1 along with the experimental data published earlier^{3,4}) and the TENDL-2019 values.⁷) The present results conform with each other and also with our previous study,³⁾ however the other literature data⁴⁾ are inconsistent. Based on our new results, the smaller cross sections would be more reliable. The TENDL-2019 values are even smaller than the experimental data.

In addition to the cross sections of the $^{nat}Nd(\alpha,$ $(x)^{153}$ Sm reaction, those of the ^{nat}Nd $(\alpha, x)^{145}$ Sm reaction will also be determined. There are no experimental data on the ^{nat}Nd $(\alpha, x)^{145}$ Sm reaction other than our previous study. The cross sections derived in this work will increase the reliability of the cross sections.

References

- 1) I. G. Finlay et al., Lancet Oncol. 6, 392 (2005).
- 2) R. G. Fairchild et al., Phys. Med. Biol. 32, 847 (1987).
- 3) M. Sakaguchi et al., Appl. Radiat. Isot. 176, 109826 (2021); M. Sakaguchi et al., in this report.
- 4) S. M. Qaim et al., Radiochim. Acta 95, 313 (2007).
- 5) J. F. Ziegler et al., SRIM: the Stopping and Range of Ions in Matter (2008), http://www.srim.org/ .
- National Nuclear Data Center, The NuDat 3.0 database, 6)http://www.nndc.bnl.gov/nudat3/.
- 7)A. J. Koning *et al.*, Nucl. Data Sheets **155**, 1 (2019).
- 8) J. H. Hubble et al., X-Ray Mass Attenuation Coefficients, NIST Standard Reference Database 126, https: //dx.doi.org/10.18434/T4D01F.

^{*1} Faculty of Science, Hokkaido University

^{*2} Graduate School of Biomedical Science and Engineering, Hokkaido University

^{*3} **RIKEN** Nishina Center

^{*6} Institute for Nuclear Research (ATOMKI)