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Recruitment of Rad51 onto chromatin is suppressed by high dose
heavy-ion irradiation in mammalian cells
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Among the DNA damages caused by an ionizing ra-
diation, DNA double strand breaks (DSBs) are the
most lethal because accumulation of misrepaired or un-
repaired DSBs can lead to a loss of genetic information
and cell death. Mammalian cells have four pathways
to repair DSBs: canonical non-homologous end joining
(NHEJ), homologous recombination (HR), alternative
NHEJ (alt-NHEJ), and single-strand annealing (SSA).
Recently, DNA repair pathways are considered as tar-
gets for cancer therapy, because their inhibitors increase
the efficacy of radiotherapy. It is also important to
know whether error-prone pathways such as SSA and
alt-NHEJ are involved in DSB repair, to estimate the
risk of secondary carcinogenesis in radiotherapy.
After exposure to low-linear energy transfer (LET)

radiation such as X-ray, NHEJ is the dominant repair
pathway throughout the cell cycle in mammalian cells,
whereas HR can only repair DSBs in the late S/G2
phase. Additionally, alt-NHEJ or SSA is effective when
both NHEJ and HR are impaired, and it contributes to
genome rearrangements and oncogenic transformations.
Previous studies have suggested that the end-resection of
DSBs is stimulated after heavy-ion irradiation through-
out the cell cycle,1,2) which can promote HR, SSA, or
alt-NHEJ. However, the repair mechanism after heavy-
ion irradiation has not been fully understood.
Our previous study using mammalian cells and spe-

cific inhibitors against NHEJ or HR suggested that
NHEJ is the major repair pathway after 2 Gy heavy-
ion irradiation.3) We also showed that HR is favored af-
ter heavy-ion irradiation in the G2-phase; however, the
DSB repair by HR is less efficiently than that after X-ray
irradiation.4)

Recent studies revealed that the number of DSBs is an
additional key parameter of pathway selection because
several repair proteins limit HR at high doses in mam-
malian cells.5,6) In this study, we examined the amount
of Rad51 on chromatin after irradiation, to investigate
the effect of irradiation dose on the repair pathway se-
lection. Rad51 is an essential core component of HR
and recruited around DSBs after irradiation. Exponen-
tially growing HeLa cells were irradiated with argon ions
(LET = 300 keV/μm) of different doses (0.5–15 Gy), and
chromatin fractions were obtained and subjected to im-
munoblot analysis (Fig. 1(A)). The amount of Rad51 in
the chromatin fraction increased up to 5 Gy in a dose-
dependent manner (Fig. 1(B)). However, the amount of
Rad51 decreased following 15 Gy irradiation. We per-
formed the same experiment using a carbon-ion beam
(LET = 80 keV/μm), which yielded similar results (data
not shown). These results suggest that HR is suppressed
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Fig. 1. Immunoblot analysis of chromatin-bound Rad51 af-

ter heavy-ion irradiation. (A) HeLa cells were irradiated

with indicated doses of Ar ions, and 0.1% Triton-insoluble

fractions (chromatin franctions) were prepared at indi-

cated time points and subjected to immunoblot analysis.

Phosphorylated histone H2AX (γH2AX) and lamin B1

were detected as an indicator of DSB and a loading con-

trol, respectively. (B) The relative intensity of Rad51

band was measured using luminoimage analyzer and nor-

malized against the amount of lamin B1.

after high dose irradiation (∼15 Gy) of high-LET ra-
diations (80–300 keV/μm). In contrast, the amount
of chromatin-bound Rad51 increased up to 15 Gy and
decreased at 30 Gy after X-ray irradiation (data not
shown).

We previously reported that trichostatin A (TSA), a
histone deacetylase inhibitor, enhanced radiosensitivity
at low doses, whereas TSA suppressed it at high doses
of heavy-ion irradiation by an unknown mechanism.7)

This finding also suggests that DNA damage response
induced by heavy-ion irradiation depends on the dose.
Currently, we are investigating the localization of several
repair proteins involved in NHEJ and SSA after irradi-
ation of different doses.
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