In-gas-cell laser ionization spectroscopy of 200g Pt using MRTOF-MS at KISS

Y. Hirayama,^{*1} M. Mukai,^{*2} Y. X. Watanabe,^{*1} P. Schury,^{*1} J. Y. Moon,^{*3} T. Hashimoto,^{*3} S. Iimura,^{*2} S. C. Jeong,^{*1} M. Rosenbusch,^{*1} M. Oyaizu,^{*1} T. Niwase,^{*1} M. Tajima,^{*2} A. Taniguchi,^{*4} M. Wada,^{*1} and H. Miyatake^{*1}

Laser spectroscopy can be used to effectively investigate the nuclear structure through the measured isotope shifts (IS) $\Delta\nu$, changes in the mean-square charge radii $\delta\langle r^2\rangle$, and quadrupole deformation parameters $|\langle \beta_2^2 \rangle|^{1/2}$. In previous work¹) related to ${}^{199g, 199m}$ Pt at the KEK Isotope Separation System (KISS),²) we reported the constant trend of $|\langle \beta_2^2 \rangle|^{1/2} \sim 0.14$ ($N \geq$ 115) approaching N = 126 deduced from the measured $\delta\langle r^2 \rangle$ values using a droplet model. As a continuation of this work followed by ${}^{199g, 199m}$ Pt laser ionization spectroscopy toward N = 126 to investigate the trend of $\delta\langle r^2 \rangle$ and $|\langle \beta_2^2 \rangle|^{1/2}$ values and the nuclear structure of neutron-rich platinum nuclei, we performed the first laser ionization spectroscopy on 200 Pt ($I^{\pi} = 0^+$ and $T_{1/2} = 12.6(3)$ h) using a multi-reflection time-of-flight mass spectrograph (MRTOF-MS) at KISS.

 200g Pt isotopes were produced via multi-nucleon transfer reactions by impinging a stable 136 Xe beam (50 particle nA) with an energy of approximately 10 MeV/nucleon on a 198 Pt target (12.5 mg/cm², enriched 91% and approximately 3% for each $^{194, 195, 196}$ Pt). The singly charged isotopes, produced by the in-gas-cell laser ionization technique, with an energy of 20 keV were extracted from the KISS gas cell for hyperfine structure measurements. Using the MRTOF-MS, the extracted ions were identified and the number of the ions was determined. Further details regarding the MRTOF-MS system can be found in Ref. 3).

Figure 1 shows the measured TOF spectrum of ${}^{200g}Pt^{2+}$ using the MRTOF-MS at KISS. The ${}^{200g}Pt^{2+}$ isotope can be clearly identified with the contaminant peaks of ${}^{200g}Au^{2+}$ and ${}^{200m}Au^{2+}$ ions ("g" and "m" indicate the ground and isomeric states, respectively), which were transported to the MRTOF-MS as the survived ions. The masses of these nuclei have already been precisely reported. To acculately evaluate the laser resonance spectrum of ${}^{200g}Pt$, we gated the relative time between 200 and 500 ns in Fig. 1 to deduce the number of ions detected by the MRTOF-MS. The laser resonance spectrum, shown in Fig. 2, was obtained by measuring the number of laser-ionized ${}^{200g}Pt$ as a function of the laser wavelength. One res-

*³ Institute for Basic Science (IBS)

Fig. 1. Measured TOF spectrum of 200g Pt²⁺.

Fig. 2. Measured HFS spectrum of 200g Pt $(I^{\pi} = 0^{+})$. Horizontal uncertainty estimated from the accuracy of a wavemeter.

onance peak was observed, which stemmed from the atomic transition of 200g Pt due to $I^{\pi} = 0^+$. The fitting function was determined from the measured resonance spectrum of the stable nucleus of 198 Pt with the same experimental conditions during beam time. From the measured peak position, we can determine the isotope shift value of 200g Pt to deduce the change in charge radius and discuss nuclear deformation. Using these results, we plan to investigate the systematic trend of IS values toward N = 126.

References

- 1) Y. Hirayama et al., Phys. Rev. C 96, 055805 (2017).
- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B **412**, 11 (2017).
- J. Y. Moon *et al.*, RIKEN Accel. Prog. Rep. 53, 128 (2019).

^{*1} Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*4} Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS)