Comparative study of the dineutron in Borromean nuclei ¹¹Li and ²²C

M. Yamagami^{*1}

A recent knockout-reaction experiment for ¹¹Li measured the mean correlation angle between the momenta of two emitted neutrons,¹⁾ which is considered to reflect the mean opening angle $\langle \theta_{nn} \rangle_0$ between the momenta \mathbf{k}_1 and \mathbf{k}_2 of valence neutrons in the ground state. In the current study, I discuss how $\langle \theta_{nn} \rangle_0$ reflects the momentum-space structure of the dineutron in the Borromean nuclei ¹¹Li and ²²C.

The three-body model calculation is performed using a finite-range *n*-*n* interaction,³⁾ which reproduces the ground-state properties of these nuclei. For example, the distance between the core and the center of mass (cm) of the dineutron in ¹¹Li is 5.00 fm, which is in agreement with the observed value of 5.01(32) fm.²⁾ $\langle \theta_{nn} \rangle_0$ for each core-*n* momentum k_n is defined by $\cos \langle \theta_{nn} \rangle_0 = \langle \cos \theta_{12} D_{k_n} \rangle / \langle D_{k_n} \rangle$. Here, $\langle \langle f \rangle \rangle = \int d^3k_1 d^3k_2 \rho_2(\mathbf{k}_1, \mathbf{k}_2) f(\mathbf{k}_1, \mathbf{k}_2)$ is the mean value of a function $f(\mathbf{k}_1, \mathbf{k}_2)$ for the two-neutron density distribution $\rho_2(\mathbf{k}_1, \mathbf{k}_2) = \delta(k_n - |\mathbf{k}_1|)\delta(k_n - |\mathbf{k}_2|)$ picks up the component of $k_n = |\mathbf{k}_1| = |\mathbf{k}_2|$ in ρ_2 .

Here, \mathbf{k}_1 and \mathbf{k}_2 can be expressed as $\mathbf{k}_{\{\frac{1}{2}\}} = \pm \mathbf{k}_{\text{rel}} + \mathbf{q}_{\text{cm}}/2$ with the relative and cm momenta \mathbf{k}_{rel} and \mathbf{q}_{cm} , respectively. As shown below, $\langle \theta_{nn} \rangle_0$ for a given k_n contains the various q_{cm} components of different neutronpair structures. To illustrate this, Fig. 1(a) shows the density distribution $\rho_{\text{cm}} = \langle \langle \delta(q_{\text{cm}} - |\mathbf{k}_1 + \mathbf{k}_2|) \rangle \rangle$ as a function of q_{cm} . The root-mean-square core-*n* momentum \bar{k}_n is defined for each q_{cm} in a similar man-

Fig. 1. (a) Two-neutron density distribution $\rho_{\rm cm}$ as a function of $q_{\rm cm}$ in ¹¹Li and ²²C. (b) Parametric curve of $(\bar{k}_n, \bar{\theta}_{\rm cm})$. See the text for details.

Fig. 2. (a) Mean opening angle $\langle \theta_{nn} \rangle_{q_c}$ in ¹¹Li as a function of k_n . The dependence on the lower cutoff q_c is shown.

(b) The same as (a) but for 22 C. See the text for details.

ner. Together with the associated opening angle $\bar{\theta}_{\rm cm} = 2 \cos^{-1}(q_{\rm cm}/2\bar{k}_n)$, the parametric curve of $(\bar{k}_n, \bar{\theta}_{\rm cm})$ is shown in Fig. 1(b). For ¹¹Li, symbol A corresponds to the peak position of $\rho_{\rm cm}$. \bar{k}_n has a local maximum (minimum), as indicated by the symbol B (C). The corresponding cm momenta $q^{(A)}$, $q^{(B)}$, and $q^{(C)}$ are 0.20, 0.47, and 0.65 fm⁻¹, respectively. $\bar{\theta}_{\rm cm} > 90^{\circ}$ at $q_{cm} < q^{(C)}$ indicates the dineutron configuration. The symbols a, b, and c for ²²C have the same meaning as A, B, and C for ¹¹Li, respectively.

The mean opening angle $\langle \theta_{nn} \rangle_{q_c}$, which takes into account the component of $q_{cm} > q_c$ in ρ_2 , is also defined. Here, q_c is a lower cutoff. Figure 2 shows $\langle \theta_{nn} \rangle_{q_c}$ in ¹¹Li and ²²C. $\langle \theta_{nn} \rangle_0$ has a peak at $k_n \approx 0.35$ fm⁻¹. The peak of $\langle \theta_{nn} \rangle_0$ is cooperatively created by the peak component of $\rho_{\rm cm}$ and the large $\bar{\theta}_{\rm cm}$ in the region of $q_{\rm cm} < q^{\rm (C)} (q^{(c)})$ in ¹¹Li (²²C). In ²²C, the enlargement of $\langle \theta_{nn} \rangle_0$ due to the low- $q_{\rm cm}$ component appears up to $k_n \approx 0.9$ fm⁻¹, which corresponds to the local maximum value of \bar{k}_n . This high local maximum value of \bar{k}_n is due to the *d*-wave contribution. Such enlargement of $\langle \theta_{nn} \rangle_0$ is not observed at high k_n in ¹¹Li.

In conclusion, I discussed how the mean opening angle $\langle \theta_{nn} \rangle_0$ depends on the momentum-space structure of the dineutron in ¹¹Li and ²²C. $\langle \theta_{nn} \rangle_0$ can be a promising probe for revealing the characteristic structure of the dineutron in each Borromean nucleus.

References

- 1) Y. Kubota et al., Phys. Rev. Lett. 125, 252501 (2020).
- 2) T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006).
- 3) M. Yamagami, RIKEN Accel. Prog. Rep. 54, 37 (2021).

^{*1} Department of Computer Science and Engineering, University of Aizu